Properties

Label 18.0.323...000.3
Degree $18$
Signature $[0, 9]$
Discriminant $-3.239\times 10^{42}$
Root discriminant \(229.98\)
Ramified primes $2,3,5,17$
Class number $243$ (GRH)
Class group [3, 3, 3, 3, 3] (GRH)
Galois group $C_3^2:C_6$ (as 18T23)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^17 + 39*x^16 - 18*x^15 - 579*x^14 + 2889*x^13 - 7292*x^12 - 207*x^11 + 62061*x^10 - 66486*x^9 - 912039*x^8 + 3557637*x^7 + 13853359*x^6 - 59070312*x^5 + 91169694*x^4 + 75997794*x^3 - 287391240*x^2 + 162804708*x + 385910388)
 
Copy content gp:K = bnfinit(y^18 - 9*y^17 + 39*y^16 - 18*y^15 - 579*y^14 + 2889*y^13 - 7292*y^12 - 207*y^11 + 62061*y^10 - 66486*y^9 - 912039*y^8 + 3557637*y^7 + 13853359*y^6 - 59070312*y^5 + 91169694*y^4 + 75997794*y^3 - 287391240*y^2 + 162804708*y + 385910388, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 9*x^17 + 39*x^16 - 18*x^15 - 579*x^14 + 2889*x^13 - 7292*x^12 - 207*x^11 + 62061*x^10 - 66486*x^9 - 912039*x^8 + 3557637*x^7 + 13853359*x^6 - 59070312*x^5 + 91169694*x^4 + 75997794*x^3 - 287391240*x^2 + 162804708*x + 385910388);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 - 9*x^17 + 39*x^16 - 18*x^15 - 579*x^14 + 2889*x^13 - 7292*x^12 - 207*x^11 + 62061*x^10 - 66486*x^9 - 912039*x^8 + 3557637*x^7 + 13853359*x^6 - 59070312*x^5 + 91169694*x^4 + 75997794*x^3 - 287391240*x^2 + 162804708*x + 385910388)
 

\( x^{18} - 9 x^{17} + 39 x^{16} - 18 x^{15} - 579 x^{14} + 2889 x^{13} - 7292 x^{12} - 207 x^{11} + \cdots + 385910388 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $18$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 9]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-3238832304182321509797314520003000000000000\) \(\medspace = -\,2^{12}\cdot 3^{33}\cdot 5^{12}\cdot 17^{12}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(229.98\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}3^{13/6}5^{2/3}17^{2/3}\approx 331.6871648497297$
Ramified primes:   \(2\), \(3\), \(5\), \(17\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-3}) \)
$\Aut(K/\Q)$:   $C_3^2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  \(\Q(\sqrt{-3}) \)

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3}a^{9}-\frac{1}{3}a^{3}$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{4}$, $\frac{1}{9}a^{11}-\frac{1}{9}a^{10}+\frac{1}{9}a^{9}+\frac{1}{3}a^{8}-\frac{1}{3}a^{6}+\frac{2}{9}a^{5}+\frac{1}{9}a^{4}-\frac{4}{9}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{18}a^{12}+\frac{1}{18}a^{9}-\frac{1}{3}a^{8}+\frac{1}{3}a^{7}-\frac{1}{18}a^{6}-\frac{1}{3}a^{5}+\frac{1}{3}a^{4}-\frac{7}{18}a^{3}-\frac{1}{3}$, $\frac{1}{18}a^{13}+\frac{1}{18}a^{10}+\frac{1}{3}a^{8}-\frac{1}{18}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{5}-\frac{7}{18}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a$, $\frac{1}{18}a^{14}-\frac{1}{18}a^{11}+\frac{1}{9}a^{10}-\frac{1}{9}a^{9}-\frac{7}{18}a^{8}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{7}{18}a^{5}-\frac{4}{9}a^{4}-\frac{2}{9}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{2626110}a^{15}+\frac{1199}{262611}a^{14}-\frac{12799}{1313055}a^{13}-\frac{32479}{1313055}a^{12}+\frac{10016}{262611}a^{11}-\frac{90478}{1313055}a^{10}-\frac{87806}{1313055}a^{9}+\frac{251621}{1313055}a^{8}+\frac{349108}{1313055}a^{7}+\frac{76829}{262611}a^{6}+\frac{456479}{1313055}a^{5}-\frac{76847}{1313055}a^{4}+\frac{179629}{875370}a^{3}-\frac{32404}{87537}a^{2}-\frac{122548}{437685}a-\frac{43163}{145895}$, $\frac{1}{97\cdots 90}a^{16}+\frac{34964761935076}{48\cdots 95}a^{15}-\frac{97\cdots 94}{48\cdots 95}a^{14}-\frac{13\cdots 82}{48\cdots 95}a^{13}+\frac{13\cdots 12}{48\cdots 95}a^{12}-\frac{59\cdots 16}{16\cdots 65}a^{11}+\frac{26\cdots 06}{16\cdots 65}a^{10}-\frac{34\cdots 61}{48\cdots 95}a^{9}+\frac{11\cdots 73}{97\cdots 79}a^{8}-\frac{14\cdots 37}{69\cdots 85}a^{7}+\frac{51\cdots 69}{48\cdots 95}a^{6}+\frac{61\cdots 02}{16\cdots 65}a^{5}+\frac{36\cdots 09}{97\cdots 90}a^{4}+\frac{10\cdots 17}{48\cdots 95}a^{3}-\frac{26\cdots 76}{53\cdots 55}a^{2}-\frac{11\cdots 19}{32\cdots 93}a+\frac{78\cdots 47}{16\cdots 65}$, $\frac{1}{31\cdots 30}a^{17}-\frac{18\cdots 79}{75\cdots 15}a^{16}+\frac{14\cdots 67}{10\cdots 10}a^{15}-\frac{38\cdots 12}{15\cdots 15}a^{14}-\frac{18\cdots 94}{15\cdots 15}a^{13}-\frac{28\cdots 43}{31\cdots 30}a^{12}+\frac{48\cdots 96}{52\cdots 05}a^{11}-\frac{16\cdots 68}{15\cdots 15}a^{10}-\frac{37\cdots 93}{31\cdots 30}a^{9}+\frac{13\cdots 52}{31\cdots 83}a^{8}+\frac{26\cdots 86}{15\cdots 15}a^{7}-\frac{90\cdots 03}{31\cdots 30}a^{6}+\frac{14\cdots 21}{31\cdots 30}a^{5}-\frac{31\cdots 21}{15\cdots 15}a^{4}-\frac{14\cdots 35}{31\cdots 83}a^{3}+\frac{40\cdots 47}{10\cdots 61}a^{2}-\frac{18\cdots 41}{10\cdots 61}a+\frac{14\cdots 04}{52\cdots 05}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  $C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{3}$, which has order $243$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{3}$, which has order $243$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $8$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -\frac{322613093892650873}{13540489471792812627627885} a^{17} + \frac{6416222392224513221}{27080978943585625255255770} a^{16} - \frac{3179461939910923999}{2708097894358562525525577} a^{15} + \frac{9296390486531632823}{5416195788717125051051154} a^{14} + \frac{34356121266500029119}{3008997660398402806139530} a^{13} - \frac{428983748103555977723}{5416195788717125051051154} a^{12} + \frac{776314451010393725379}{3008997660398402806139530} a^{11} - \frac{7687795363768885552441}{27080978943585625255255770} a^{10} - \frac{29635967101534573574633}{27080978943585625255255770} a^{9} + \frac{14186262304587396430969}{5416195788717125051051154} a^{8} + \frac{165733773107215295620363}{9026992981195208418418590} a^{7} - \frac{2773865953876668672112463}{27080978943585625255255770} a^{6} - \frac{1154013138366596768222449}{5416195788717125051051154} a^{5} + \frac{20921298042257590218660022}{13540489471792812627627885} a^{4} - \frac{35409505473404777045170151}{9026992981195208418418590} a^{3} + \frac{12092639429623220885692801}{4513496490597604209209295} a^{2} + \frac{3048315327674360689540792}{902699298119520841841859} a - \frac{11305076408578940112936246}{1504498830199201403069765} \)  (order $6$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{37\cdots 57}{31\cdots 30}a^{17}-\frac{55\cdots 91}{45\cdots 90}a^{16}+\frac{13\cdots 99}{21\cdots 22}a^{15}-\frac{22\cdots 13}{21\cdots 22}a^{14}-\frac{58\cdots 19}{10\cdots 10}a^{13}+\frac{87\cdots 41}{21\cdots 22}a^{12}-\frac{27\cdots 69}{19\cdots 10}a^{11}+\frac{58\cdots 67}{31\cdots 30}a^{10}+\frac{52\cdots 27}{10\cdots 10}a^{9}-\frac{10\cdots 59}{70\cdots 74}a^{8}-\frac{94\cdots 91}{10\cdots 10}a^{7}+\frac{57\cdots 87}{10\cdots 10}a^{6}+\frac{29\cdots 01}{31\cdots 83}a^{5}-\frac{13\cdots 49}{15\cdots 15}a^{4}+\frac{38\cdots 42}{17\cdots 35}a^{3}-\frac{10\cdots 42}{52\cdots 05}a^{2}-\frac{84\cdots 74}{10\cdots 61}a+\frac{55\cdots 87}{17\cdots 35}$, $\frac{77\cdots 33}{45\cdots 69}a^{17}-\frac{77\cdots 52}{45\cdots 69}a^{16}+\frac{37\cdots 86}{45\cdots 69}a^{15}-\frac{50\cdots 92}{45\cdots 69}a^{14}-\frac{44\cdots 00}{50\cdots 41}a^{13}+\frac{26\cdots 76}{45\cdots 69}a^{12}-\frac{91\cdots 24}{50\cdots 41}a^{11}+\frac{78\cdots 24}{45\cdots 69}a^{10}+\frac{57\cdots 71}{64\cdots 67}a^{9}-\frac{91\cdots 59}{45\cdots 69}a^{8}-\frac{20\cdots 02}{15\cdots 23}a^{7}+\frac{33\cdots 41}{45\cdots 69}a^{6}+\frac{74\cdots 19}{45\cdots 69}a^{5}-\frac{52\cdots 98}{45\cdots 69}a^{4}+\frac{58\cdots 31}{21\cdots 89}a^{3}-\frac{20\cdots 06}{15\cdots 23}a^{2}-\frac{55\cdots 44}{15\cdots 23}a+\frac{33\cdots 59}{50\cdots 41}$, $\frac{10\cdots 39}{31\cdots 83}a^{17}-\frac{27\cdots 07}{15\cdots 30}a^{16}+\frac{18\cdots 41}{52\cdots 05}a^{15}+\frac{85\cdots 61}{31\cdots 30}a^{14}-\frac{49\cdots 37}{31\cdots 30}a^{13}+\frac{12\cdots 17}{52\cdots 05}a^{12}+\frac{14\cdots 29}{10\cdots 10}a^{11}-\frac{13\cdots 47}{31\cdots 30}a^{10}+\frac{56\cdots 09}{52\cdots 05}a^{9}+\frac{31\cdots 07}{63\cdots 66}a^{8}-\frac{86\cdots 79}{31\cdots 30}a^{7}-\frac{28\cdots 76}{52\cdots 05}a^{6}+\frac{23\cdots 31}{31\cdots 30}a^{5}+\frac{37\cdots 66}{15\cdots 15}a^{4}-\frac{13\cdots 28}{52\cdots 05}a^{3}+\frac{14\cdots 51}{52\cdots 05}a^{2}+\frac{64\cdots 59}{10\cdots 61}a+\frac{67\cdots 37}{17\cdots 35}$, $\frac{34\cdots 48}{31\cdots 83}a^{17}-\frac{18\cdots 58}{22\cdots 45}a^{16}+\frac{89\cdots 22}{31\cdots 83}a^{15}+\frac{51\cdots 93}{15\cdots 15}a^{14}-\frac{93\cdots 92}{15\cdots 15}a^{13}+\frac{13\cdots 19}{63\cdots 66}a^{12}-\frac{70\cdots 76}{17\cdots 35}a^{11}-\frac{12\cdots 83}{15\cdots 15}a^{10}+\frac{17\cdots 21}{31\cdots 30}a^{9}+\frac{48\cdots 14}{15\cdots 15}a^{8}-\frac{31\cdots 30}{31\cdots 83}a^{7}+\frac{68\cdots 69}{31\cdots 30}a^{6}+\frac{30\cdots 34}{15\cdots 15}a^{5}-\frac{17\cdots 84}{52\cdots 05}a^{4}+\frac{53\cdots 65}{21\cdots 22}a^{3}+\frac{65\cdots 31}{52\cdots 05}a^{2}-\frac{22\cdots 19}{17\cdots 35}a-\frac{65\cdots 58}{35\cdots 87}$, $\frac{76\cdots 66}{15\cdots 15}a^{17}-\frac{10\cdots 23}{22\cdots 45}a^{16}+\frac{32\cdots 23}{31\cdots 30}a^{15}+\frac{12\cdots 97}{63\cdots 66}a^{14}-\frac{53\cdots 62}{17\cdots 35}a^{13}+\frac{15\cdots 13}{15\cdots 15}a^{12}-\frac{24\cdots 53}{35\cdots 70}a^{11}-\frac{17\cdots 08}{15\cdots 15}a^{10}+\frac{12\cdots 07}{31\cdots 83}a^{9}+\frac{79\cdots 91}{31\cdots 30}a^{8}-\frac{85\cdots 57}{10\cdots 61}a^{7}-\frac{10\cdots 22}{15\cdots 15}a^{6}+\frac{22\cdots 19}{31\cdots 30}a^{5}-\frac{51\cdots 84}{31\cdots 83}a^{4}-\frac{45\cdots 81}{10\cdots 10}a^{3}+\frac{22\cdots 23}{52\cdots 05}a^{2}-\frac{18\cdots 59}{52\cdots 05}a-\frac{10\cdots 27}{17\cdots 35}$, $\frac{29\cdots 09}{10\cdots 10}a^{17}-\frac{13\cdots 52}{75\cdots 15}a^{16}-\frac{10\cdots 88}{15\cdots 15}a^{15}+\frac{10\cdots 08}{15\cdots 15}a^{14}-\frac{34\cdots 14}{15\cdots 15}a^{13}-\frac{21\cdots 77}{31\cdots 30}a^{12}+\frac{15\cdots 57}{31\cdots 83}a^{11}+\frac{80\cdots 26}{15\cdots 15}a^{10}-\frac{19\cdots 41}{31\cdots 30}a^{9}+\frac{81\cdots 48}{15\cdots 15}a^{8}+\frac{10\cdots 78}{15\cdots 15}a^{7}-\frac{47\cdots 85}{63\cdots 66}a^{6}-\frac{14\cdots 97}{63\cdots 66}a^{5}+\frac{14\cdots 01}{15\cdots 15}a^{4}-\frac{62\cdots 99}{35\cdots 70}a^{3}-\frac{98\cdots 06}{52\cdots 05}a^{2}+\frac{10\cdots 76}{52\cdots 05}a+\frac{96\cdots 46}{35\cdots 87}$, $\frac{11\cdots 15}{10\cdots 61}a^{17}-\frac{59\cdots 47}{45\cdots 69}a^{16}+\frac{11\cdots 23}{21\cdots 22}a^{15}+\frac{21\cdots 14}{31\cdots 83}a^{14}-\frac{97\cdots 71}{63\cdots 66}a^{13}+\frac{45\cdots 59}{10\cdots 61}a^{12}+\frac{25\cdots 65}{31\cdots 83}a^{11}-\frac{36\cdots 49}{63\cdots 66}a^{10}-\frac{39\cdots 33}{10\cdots 61}a^{9}+\frac{23\cdots 49}{31\cdots 83}a^{8}-\frac{35\cdots 49}{63\cdots 66}a^{7}-\frac{20\cdots 14}{35\cdots 87}a^{6}+\frac{56\cdots 56}{31\cdots 83}a^{5}-\frac{86\cdots 81}{70\cdots 74}a^{4}-\frac{23\cdots 33}{70\cdots 74}a^{3}+\frac{63\cdots 07}{10\cdots 61}a^{2}+\frac{29\cdots 98}{35\cdots 87}a-\frac{21\cdots 08}{35\cdots 87}$, $\frac{97\cdots 29}{35\cdots 70}a^{17}-\frac{18\cdots 53}{45\cdots 90}a^{16}+\frac{47\cdots 78}{15\cdots 15}a^{15}-\frac{12\cdots 91}{10\cdots 61}a^{14}+\frac{24\cdots 71}{31\cdots 30}a^{13}+\frac{59\cdots 77}{31\cdots 30}a^{12}-\frac{66\cdots 41}{52\cdots 05}a^{11}+\frac{90\cdots 43}{21\cdots 22}a^{10}-\frac{16\cdots 19}{31\cdots 30}a^{9}-\frac{13\cdots 38}{52\cdots 05}a^{8}+\frac{49\cdots 27}{31\cdots 30}a^{7}-\frac{11\cdots 57}{31\cdots 30}a^{6}+\frac{29\cdots 71}{10\cdots 10}a^{5}+\frac{78\cdots 41}{15\cdots 15}a^{4}-\frac{28\cdots 53}{21\cdots 22}a^{3}+\frac{13\cdots 78}{17\cdots 35}a^{2}+\frac{52\cdots 42}{52\cdots 05}a-\frac{16\cdots 82}{17\cdots 35}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 3978163078155.4883 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 3978163078155.4883 \cdot 243}{6\cdot\sqrt{3238832304182321509797314520003000000000000}}\cr\approx \mathstrut & 1.36635071887234 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^17 + 39*x^16 - 18*x^15 - 579*x^14 + 2889*x^13 - 7292*x^12 - 207*x^11 + 62061*x^10 - 66486*x^9 - 912039*x^8 + 3557637*x^7 + 13853359*x^6 - 59070312*x^5 + 91169694*x^4 + 75997794*x^3 - 287391240*x^2 + 162804708*x + 385910388) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 9*x^17 + 39*x^16 - 18*x^15 - 579*x^14 + 2889*x^13 - 7292*x^12 - 207*x^11 + 62061*x^10 - 66486*x^9 - 912039*x^8 + 3557637*x^7 + 13853359*x^6 - 59070312*x^5 + 91169694*x^4 + 75997794*x^3 - 287391240*x^2 + 162804708*x + 385910388, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 9*x^17 + 39*x^16 - 18*x^15 - 579*x^14 + 2889*x^13 - 7292*x^12 - 207*x^11 + 62061*x^10 - 66486*x^9 - 912039*x^8 + 3557637*x^7 + 13853359*x^6 - 59070312*x^5 + 91169694*x^4 + 75997794*x^3 - 287391240*x^2 + 162804708*x + 385910388); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 9*x^17 + 39*x^16 - 18*x^15 - 579*x^14 + 2889*x^13 - 7292*x^12 - 207*x^11 + 62061*x^10 - 66486*x^9 - 912039*x^8 + 3557637*x^7 + 13853359*x^6 - 59070312*x^5 + 91169694*x^4 + 75997794*x^3 - 287391240*x^2 + 162804708*x + 385910388); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3^2:C_6$ (as 18T23):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 54
The 18 conjugacy class representatives for $C_3^2:C_6$
Character table for $C_3^2:C_6$

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.1.867.1 x3, 6.0.1771470000.6, 6.0.147954945870000.11, 6.0.147954945870000.12, 6.0.2255067.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 18 siblings: data not computed
Degree 27 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.3.0.1}{3} }^{6}$ ${\href{/padicField/11.6.0.1}{6} }^{3}$ ${\href{/padicField/13.3.0.1}{3} }^{6}$ R ${\href{/padicField/19.3.0.1}{3} }^{6}$ ${\href{/padicField/23.6.0.1}{6} }^{3}$ ${\href{/padicField/29.6.0.1}{6} }^{3}$ ${\href{/padicField/31.3.0.1}{3} }^{6}$ ${\href{/padicField/37.3.0.1}{3} }^{6}$ ${\href{/padicField/41.6.0.1}{6} }^{3}$ ${\href{/padicField/43.3.0.1}{3} }^{6}$ ${\href{/padicField/47.6.0.1}{6} }^{3}$ ${\href{/padicField/53.2.0.1}{2} }^{9}$ ${\href{/padicField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.3.4a1.1$x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 5 x + 1$$3$$2$$4$$S_3\times C_3$$$[\ ]_{3}^{6}$$
2.2.3.4a1.1$x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 5 x + 1$$3$$2$$4$$S_3\times C_3$$$[\ ]_{3}^{6}$$
2.2.3.4a1.1$x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 5 x + 1$$3$$2$$4$$S_3\times C_3$$$[\ ]_{3}^{6}$$
\(3\) Copy content Toggle raw display 3.1.6.11a1.7$x^{6} + 9 x + 3$$6$$1$$11$$S_3\times C_3$$$[2, \frac{5}{2}]_{2}$$
3.1.6.11a1.7$x^{6} + 9 x + 3$$6$$1$$11$$S_3\times C_3$$$[2, \frac{5}{2}]_{2}$$
3.1.6.11a1.7$x^{6} + 9 x + 3$$6$$1$$11$$S_3\times C_3$$$[2, \frac{5}{2}]_{2}$$
\(5\) Copy content Toggle raw display 5.2.3.4a1.1$x^{6} + 12 x^{5} + 54 x^{4} + 112 x^{3} + 108 x^{2} + 53 x + 8$$3$$2$$4$$S_3\times C_3$$$[\ ]_{3}^{6}$$
5.2.3.4a1.1$x^{6} + 12 x^{5} + 54 x^{4} + 112 x^{3} + 108 x^{2} + 53 x + 8$$3$$2$$4$$S_3\times C_3$$$[\ ]_{3}^{6}$$
5.2.3.4a1.1$x^{6} + 12 x^{5} + 54 x^{4} + 112 x^{3} + 108 x^{2} + 53 x + 8$$3$$2$$4$$S_3\times C_3$$$[\ ]_{3}^{6}$$
\(17\) Copy content Toggle raw display 17.2.3.4a1.2$x^{6} + 48 x^{5} + 777 x^{4} + 4384 x^{3} + 2331 x^{2} + 432 x + 44$$3$$2$$4$$S_3$$$[\ ]_{3}^{2}$$
17.2.3.4a1.2$x^{6} + 48 x^{5} + 777 x^{4} + 4384 x^{3} + 2331 x^{2} + 432 x + 44$$3$$2$$4$$S_3$$$[\ ]_{3}^{2}$$
17.2.3.4a1.2$x^{6} + 48 x^{5} + 777 x^{4} + 4384 x^{3} + 2331 x^{2} + 432 x + 44$$3$$2$$4$$S_3$$$[\ ]_{3}^{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)