Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $23$ | |
| Group : | $C_3\times C_3:S_3$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,18,7,6,14,10)(2,17,8,5,15,12)(3,16,9,4,13,11), (1,8,13)(2,9,14)(3,7,15)(4,5,6)(10,11,12)(16,17,18), (1,9,15)(2,7,13)(3,8,14)(4,6,5)(10,12,11)(16,18,17) | |
| $|\Aut(F/K)|$: | $9$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $S_3$ x 4, $C_6$ 18: $S_3\times C_3$ x 4, $C_3^2:C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 6: $S_3$, $S_3\times C_3$ x 3
Degree 9: None
Low degree siblings
18T23 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $3$ | $( 4,11,16)( 5,12,17)( 6,10,18)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $3$ | $( 4,16,11)( 5,17,12)( 6,18,10)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 2, 3)( 4,12,18)( 5,10,16)( 6,11,17)( 7, 8, 9)(13,14,15)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 2, 3)( 4,17,10)( 5,18,11)( 6,16,12)( 7, 8, 9)(13,14,15)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 3, 2)( 4,10,17)( 5,11,18)( 6,12,16)( 7, 9, 8)(13,15,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 3, 2)( 4,18,12)( 5,16,10)( 6,17,11)( 7, 9, 8)(13,15,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 4)( 2, 6)( 3, 5)( 7,11)( 8,10)( 9,12)(13,17)(14,16)(15,18)$ |
| $ 6, 6, 6 $ | $9$ | $6$ | $( 1, 4, 7,11,14,16)( 2, 6, 8,10,15,18)( 3, 5, 9,12,13,17)$ |
| $ 6, 6, 6 $ | $9$ | $6$ | $( 1, 4,14,16, 7,11)( 2, 6,15,18, 8,10)( 3, 5,13,17, 9,12)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 7,14)( 2, 8,15)( 3, 9,13)( 4,11,16)( 5,12,17)( 6,10,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 7,14)( 2, 8,15)( 3, 9,13)( 4,16,11)( 5,17,12)( 6,18,10)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 8,13)( 2, 9,14)( 3, 7,15)( 4,12,18)( 5,10,16)( 6,11,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 8,13)( 2, 9,14)( 3, 7,15)( 4,17,10)( 5,18,11)( 6,16,12)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 9,15)( 2, 7,13)( 3, 8,14)( 4,18,12)( 5,16,10)( 6,17,11)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1,13, 8)( 2,14, 9)( 3,15, 7)( 4,18,12)( 5,16,10)( 6,17,11)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1,14, 7)( 2,15, 8)( 3,13, 9)( 4,16,11)( 5,17,12)( 6,18,10)$ |
Group invariants
| Order: | $54=2 \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [54, 13] |
| Character table: |
2 1 . . . . . . . 1 1 1 1 . . . . . 1
3 3 3 3 3 3 3 3 3 1 1 1 3 3 3 3 3 3 3
1a 3a 3b 3c 3d 3e 3f 3g 2a 6a 6b 3h 3i 3j 3k 3l 3m 3n
2P 1a 3b 3a 3c 3g 3f 3e 3d 1a 3h 3n 3n 3i 3m 3k 3l 3j 3h
3P 1a 1a 1a 1a 1a 1a 1a 1a 2a 2a 2a 1a 1a 1a 1a 1a 1a 1a
5P 1a 3b 3a 3c 3g 3f 3e 3d 2a 6b 6a 3n 3i 3m 3k 3l 3j 3h
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 1 1 1 1
X.3 1 A /A 1 A /A A /A -1 -A -/A /A 1 /A 1 1 A A
X.4 1 /A A 1 /A A /A A -1 -/A -A A 1 A 1 1 /A /A
X.5 1 A /A 1 A /A A /A 1 A /A /A 1 /A 1 1 A A
X.6 1 /A A 1 /A A /A A 1 /A A A 1 A 1 1 /A /A
X.7 2 -1 -1 2 -1 -1 -1 -1 . . . 2 -1 2 -1 -1 2 2
X.8 2 2 2 -1 -1 -1 -1 -1 . . . 2 2 -1 -1 -1 -1 2
X.9 2 -1 -1 -1 -1 2 2 -1 . . . 2 -1 -1 -1 2 -1 2
X.10 2 -1 -1 -1 2 -1 -1 2 . . . 2 -1 -1 2 -1 -1 2
X.11 2 -/A -A 2 -/A -A -/A -A . . . /B -1 /B -1 -1 B B
X.12 2 -A -/A 2 -A -/A -A -/A . . . B -1 B -1 -1 /B /B
X.13 2 B /B -1 -/A -A -/A -A . . . /B 2 -A -1 -1 -/A B
X.14 2 /B B -1 -A -/A -A -/A . . . B 2 -/A -1 -1 -A /B
X.15 2 -/A -A -1 -/A /B B -A . . . /B -1 -A -1 2 -/A B
X.16 2 -A -/A -1 -A B /B -/A . . . B -1 -/A -1 2 -A /B
X.17 2 -/A -A -1 B -A -/A /B . . . /B -1 -A 2 -1 -/A B
X.18 2 -A -/A -1 /B -/A -A B . . . B -1 -/A 2 -1 -A /B
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 2*E(3)
= -1+Sqrt(-3) = 2b3
|