Defining polynomial
\(x^{6} + 9 x + 3\)
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $6$ |
Ramification index $e$: | $6$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $11$ |
Discriminant root field: | $\Q_{3}(\sqrt{3\cdot 2})$ |
Root number: | $-i$ |
$\Aut(K/\Q_{3})$: | $C_3$ |
This field is not Galois over $\Q_{3}.$ | |
Visible Artin slopes: | $[\frac{5}{2}]$ |
Visible Swan slopes: | $[\frac{3}{2}]$ |
Means: | $\langle1\rangle$ |
Rams: | $(3)$ |
Jump set: | $[1, 7]$ |
Roots of unity: | $6 = (3 - 1) \cdot 3$ |
Intermediate fields
$\Q_{3}(\sqrt{3\cdot 2})$ |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{3}$ |
Relative Eisenstein polynomial: |
\( x^{6} + 9 x + 3 \)
|
Ramification polygon
Residual polynomials: | $z^3 + 2$,$2 z^2 + 1$ |
Associated inertia: | $1$,$1$ |
Indices of inseparability: | $[6, 0]$ |
Invariants of the Galois closure
Galois degree: | $18$ |
Galois group: | $C_3\times S_3$ (as 6T5) |
Inertia group: | $C_3\times S_3$ (as 6T5) |
Wild inertia group: | $C_3^2$ |
Galois unramified degree: | $1$ |
Galois tame degree: | $2$ |
Galois Artin slopes: | $[2, \frac{5}{2}]$ |
Galois Swan slopes: | $[1,\frac{3}{2}]$ |
Galois mean slope: | $2.1666666666666665$ |
Galois splitting model: | $x^{6} - 3 x^{3} + 3$ |