Properties

Label 3.1.6.11a1.7
Base \(\Q_{3}\)
Degree \(6\)
e \(6\)
f \(1\)
c \(11\)
Galois group $S_3\times C_3$ (as 6T5)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{6} + 9 x + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $6$
Ramification index $e$: $6$
Residue field degree $f$: $1$
Discriminant exponent $c$: $11$
Discriminant root field: $\Q_{3}(\sqrt{3\cdot 2})$
Root number: $-i$
$\Aut(K/\Q_{3})$: $C_3$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\frac{5}{2}]$
Visible Swan slopes:$[\frac{3}{2}]$
Means:$\langle1\rangle$
Rams:$(3)$
Jump set:$[1, 7]$
Roots of unity:$6 = (3 - 1) \cdot 3$

Intermediate fields

$\Q_{3}(\sqrt{3\cdot 2})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{6} + 9 x + 3 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^3 + 2$,$2 z^2 + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[6, 0]$

Invariants of the Galois closure

Galois degree: $18$
Galois group: $C_3\times S_3$ (as 6T5)
Inertia group: $C_3\times S_3$ (as 6T5)
Wild inertia group: $C_3^2$
Galois unramified degree: $1$
Galois tame degree: $2$
Galois Artin slopes: $[2, \frac{5}{2}]$
Galois Swan slopes: $[1,\frac{3}{2}]$
Galois mean slope: $2.1666666666666665$
Galois splitting model:$x^{6} - 3 x^{3} + 3$