Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 99 x^{15} - 129 x^{14} + 1845 x^{13} + 4363 x^{12} - 46008 x^{11} + 155823 x^{10} - 946308 x^{9} + 2059689 x^{8} - 1186992 x^{7} + 4368925 x^{6} - 19419525 x^{5} + 104639490 x^{4} + 498275931 x^{3} - 2708142030 x^{2} + 2120234994 x + 21867232251 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-872233768265190335916797362984151904157842243=-\,3^{33}\cdot 271^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $313.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 271$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{71083} a^{15} + \frac{7861}{71083} a^{14} + \frac{16030}{71083} a^{13} + \frac{8888}{71083} a^{12} - \frac{1629}{71083} a^{11} + \frac{20566}{71083} a^{10} + \frac{19122}{71083} a^{9} + \frac{24274}{71083} a^{8} + \frac{13443}{71083} a^{7} + \frac{1196}{71083} a^{6} + \frac{21138}{71083} a^{5} - \frac{6538}{71083} a^{4} - \frac{34}{2293} a^{3} - \frac{12752}{71083} a^{2} + \frac{1020}{2293} a + \frac{14612}{71083}$, $\frac{1}{1837134490219097730708743} a^{16} + \frac{7472253269088982689}{1837134490219097730708743} a^{15} - \frac{57141099157306590015957}{1837134490219097730708743} a^{14} + \frac{310492156189845186379718}{1837134490219097730708743} a^{13} + \frac{143057586664914299060468}{1837134490219097730708743} a^{12} + \frac{331650153547982833771461}{1837134490219097730708743} a^{11} - \frac{433374400801484500341218}{1837134490219097730708743} a^{10} + \frac{909887713451475419853300}{1837134490219097730708743} a^{9} + \frac{246969737691486178542119}{1837134490219097730708743} a^{8} + \frac{400486279968495313111009}{1837134490219097730708743} a^{7} - \frac{225719815554073537545021}{1837134490219097730708743} a^{6} + \frac{19735603067631607560084}{1837134490219097730708743} a^{5} + \frac{295295566779334453149334}{1837134490219097730708743} a^{4} + \frac{171766318098771179215963}{1837134490219097730708743} a^{3} + \frac{589350772274760271582888}{1837134490219097730708743} a^{2} - \frac{237885103497004901812303}{1837134490219097730708743} a + \frac{830115608724168813187284}{1837134490219097730708743}$, $\frac{1}{10709851026474611241157175365328422696980804628117361} a^{17} + \frac{935581426971596931341304453}{10709851026474611241157175365328422696980804628117361} a^{16} + \frac{1851495077382379711245494247928097309344345872}{345479065370148749714747592429949119257445310584431} a^{15} + \frac{4565613366188535026285790620103281600345904993744631}{10709851026474611241157175365328422696980804628117361} a^{14} + \frac{2731102229985096239560331023187150659414549075473921}{10709851026474611241157175365328422696980804628117361} a^{13} + \frac{2394830809921540563003739304627939953586848937930712}{10709851026474611241157175365328422696980804628117361} a^{12} + \frac{1895498396284924650746386610168954008879525463584478}{10709851026474611241157175365328422696980804628117361} a^{11} - \frac{890909921847510888050876495218455458735901695521235}{10709851026474611241157175365328422696980804628117361} a^{10} + \frac{1144682151917086723880200842022426834889376144201297}{10709851026474611241157175365328422696980804628117361} a^{9} - \frac{2625603957999198029498064741506167654420937031163011}{10709851026474611241157175365328422696980804628117361} a^{8} + \frac{2762717571946565884434369038378218540365017413624293}{10709851026474611241157175365328422696980804628117361} a^{7} + \frac{2461325217300835987280084692791347877358888360976117}{10709851026474611241157175365328422696980804628117361} a^{6} - \frac{3442511711800973523767324054002317217201606512074042}{10709851026474611241157175365328422696980804628117361} a^{5} - \frac{1504688725105304752384775825005546069413457704453247}{10709851026474611241157175365328422696980804628117361} a^{4} - \frac{2435631798016868829506228338218136613596939802051930}{10709851026474611241157175365328422696980804628117361} a^{3} - \frac{5307155003693981011142631479894283411739398386183714}{10709851026474611241157175365328422696980804628117361} a^{2} + \frac{1813158822706573234349380089055364874731126496208768}{10709851026474611241157175365328422696980804628117361} a + \frac{725537892168696059457594883953321017944728971862751}{10709851026474611241157175365328422696980804628117361}$
Class group and class number
$C_{3}\times C_{9}\times C_{9}\times C_{9}\times C_{27}$, which has order $59049$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2274083489486187949907684580}{26111771365972209393201946511342978627} a^{17} - \frac{20166101670959196556235218728}{26111771365972209393201946511342978627} a^{16} + \frac{113506098668031272891558836800}{26111771365972209393201946511342978627} a^{15} - \frac{426300385125157382371471981278}{26111771365972209393201946511342978627} a^{14} + \frac{533597676028520720105362409676}{26111771365972209393201946511342978627} a^{13} + \frac{2114777606439632367215865710007}{26111771365972209393201946511342978627} a^{12} + \frac{7249680870294097949654728385088}{26111771365972209393201946511342978627} a^{11} - \frac{68871487566633642148553032362870}{26111771365972209393201946511342978627} a^{10} + \frac{547179414515073363428679669909457}{26111771365972209393201946511342978627} a^{9} - \frac{3205014335322444622354579352376978}{26111771365972209393201946511342978627} a^{8} + \frac{7683270916760636618901895225125288}{26111771365972209393201946511342978627} a^{7} - \frac{24504152119512500450963066475478437}{26111771365972209393201946511342978627} a^{6} + \frac{50552996847591787804369555975652346}{26111771365972209393201946511342978627} a^{5} - \frac{91032147372229840711109808769539960}{26111771365972209393201946511342978627} a^{4} + \frac{839819815583821407743989405351392857}{26111771365972209393201946511342978627} a^{3} - \frac{428117539991850364612598402558227020}{26111771365972209393201946511342978627} a^{2} - \frac{3065042088677030637908159655622343262}{26111771365972209393201946511342978627} a + \frac{23871366434474215020142379222327668276}{26111771365972209393201946511342978627} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 165741048476.84244 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_3:S_3$ (as 18T23):
| A solvable group of order 54 |
| The 18 conjugacy class representatives for $C_3\times C_3:S_3$ |
| Character table for $C_3\times C_3:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.220323.1 x3, Deg 6, 6.0.177147.1, Deg 6, 6.0.145626672987.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.11.15 | $x^{6} + 3 x^{3} + 3$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ |
| 3.6.11.15 | $x^{6} + 3 x^{3} + 3$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ | |
| 3.6.11.15 | $x^{6} + 3 x^{3} + 3$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ | |
| 271 | Data not computed | ||||||