Normalized defining polynomial
\( x^{18} - 72 x^{16} - 15 x^{15} + 1692 x^{14} - 120 x^{13} - 16668 x^{12} + 7470 x^{11} + 65196 x^{10} - 39545 x^{9} - 104526 x^{8} + 52290 x^{7} + 84016 x^{6} - 18900 x^{5} - 34320 x^{4} - 2525 x^{3} + 4950 x^{2} + 1500 x + 125 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(116407003600838612509128000000000=2^{12}\cdot 3^{24}\cdot 5^{9}\cdot 61^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{12} + \frac{2}{5} a^{10} + \frac{2}{5} a^{8} + \frac{1}{5} a^{6} - \frac{1}{5} a^{4} + \frac{1}{5} a^{2}$, $\frac{1}{135} a^{15} - \frac{14}{45} a^{13} - \frac{13}{27} a^{12} + \frac{1}{5} a^{11} + \frac{2}{9} a^{10} - \frac{53}{135} a^{9} + \frac{2}{45} a^{7} - \frac{8}{27} a^{6} + \frac{1}{15} a^{5} + \frac{2}{9} a^{4} + \frac{7}{45} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{13}{27}$, $\frac{1}{675} a^{16} - \frac{14}{225} a^{14} - \frac{13}{135} a^{13} - \frac{9}{25} a^{12} + \frac{2}{45} a^{11} + \frac{217}{675} a^{10} + \frac{2}{5} a^{9} + \frac{2}{225} a^{8} + \frac{46}{135} a^{7} + \frac{31}{75} a^{6} + \frac{11}{45} a^{5} - \frac{38}{225} a^{4} - \frac{1}{3} a^{3} - \frac{2}{15} a^{2} - \frac{8}{27} a$, $\frac{1}{8666240304154206862258102575} a^{17} + \frac{1599983118815446554688162}{8666240304154206862258102575} a^{16} - \frac{16512688115586755252802182}{8666240304154206862258102575} a^{15} + \frac{81574929359997882560166691}{8666240304154206862258102575} a^{14} - \frac{1903248678321290372796629918}{8666240304154206862258102575} a^{13} - \frac{1518336231191910812784628256}{8666240304154206862258102575} a^{12} - \frac{47740717686069351022368128}{8666240304154206862258102575} a^{11} - \frac{2301901162619861474685732956}{8666240304154206862258102575} a^{10} + \frac{389092826355825893834238841}{8666240304154206862258102575} a^{9} + \frac{3918600620489319735540245897}{8666240304154206862258102575} a^{8} + \frac{524250042387149898361546274}{8666240304154206862258102575} a^{7} + \frac{1221436113828577432139257448}{8666240304154206862258102575} a^{6} - \frac{1373688503345357711002301623}{2888746768051402287419367525} a^{5} - \frac{242980551423539135839267426}{2888746768051402287419367525} a^{4} + \frac{253558388056499078157760913}{577749353610280457483873505} a^{3} + \frac{181335923706291826291591856}{1733248060830841372451620515} a^{2} + \frac{54454827877247755941969439}{346649612166168274490324103} a - \frac{165345776080769777311795262}{346649612166168274490324103}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13504431477.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_3:S_3$ (as 18T23):
| A solvable group of order 54 |
| The 18 conjugacy class representatives for $C_3\times C_3:S_3$ |
| Character table for $C_3\times C_3:S_3$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.3.1620.1 x3, 6.6.7442000.1, 6.6.48826962000.4, 6.6.3051685125.2, 6.6.13122000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.8.5 | $x^{6} + 9 x^{2} + 9$ | $3$ | $2$ | $8$ | $S_3$ | $[2]^{2}$ |
| 3.6.8.5 | $x^{6} + 9 x^{2} + 9$ | $3$ | $2$ | $8$ | $S_3$ | $[2]^{2}$ | |
| 3.6.8.5 | $x^{6} + 9 x^{2} + 9$ | $3$ | $2$ | $8$ | $S_3$ | $[2]^{2}$ | |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $61$ | 61.3.2.3 | $x^{3} - 244$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 61.3.2.3 | $x^{3} - 244$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 61.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 61.3.2.3 | $x^{3} - 244$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 61.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 61.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |