Normalized defining polynomial
\( x^{18} + 9 x^{16} - 36 x^{15} + 36 x^{14} - 117 x^{13} + 519 x^{12} + 54 x^{11} - 783 x^{10} - 2565 x^{9} - 1323 x^{8} + 10323 x^{7} + 3276 x^{6} - 23787 x^{5} - 43209 x^{4} + 7146 x^{3} + 132030 x^{2} + 138402 x + 47523 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2361108749748912380642242285082187=-\,3^{39}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7} a^{14} - \frac{2}{7} a^{13} - \frac{3}{7} a^{12} + \frac{3}{7} a^{11} + \frac{2}{7} a^{10} - \frac{3}{7} a^{9} - \frac{3}{7} a^{8} + \frac{3}{7} a^{6} - \frac{1}{7} a^{4} + \frac{3}{7} a^{3} - \frac{2}{7} a^{2} + \frac{3}{7} a$, $\frac{1}{7} a^{15} - \frac{3}{7} a^{12} + \frac{1}{7} a^{11} + \frac{1}{7} a^{10} - \frac{2}{7} a^{9} + \frac{1}{7} a^{8} + \frac{3}{7} a^{7} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} + \frac{1}{7} a^{4} - \frac{3}{7} a^{3} - \frac{1}{7} a^{2} - \frac{1}{7} a$, $\frac{1}{511} a^{16} + \frac{30}{511} a^{15} - \frac{2}{73} a^{14} + \frac{32}{511} a^{13} + \frac{121}{511} a^{12} + \frac{38}{511} a^{11} + \frac{19}{73} a^{10} + \frac{214}{511} a^{9} - \frac{30}{511} a^{8} + \frac{201}{511} a^{7} - \frac{234}{511} a^{6} - \frac{85}{511} a^{5} - \frac{29}{511} a^{4} + \frac{10}{73} a^{3} + \frac{39}{511} a^{2} + \frac{208}{511} a$, $\frac{1}{1556109241243725144844138366982159441} a^{17} + \frac{1098083755426785376237223440921494}{1556109241243725144844138366982159441} a^{16} - \frac{19957381885871104188991567654633343}{1556109241243725144844138366982159441} a^{15} - \frac{87603951227836390736802566302489469}{1556109241243725144844138366982159441} a^{14} + \frac{185570408053255312457099643743789080}{1556109241243725144844138366982159441} a^{13} + \frac{274450336528611230073718309644730063}{1556109241243725144844138366982159441} a^{12} + \frac{389116382326718412525934561422755272}{1556109241243725144844138366982159441} a^{11} + \frac{151285576333701579176437060185358745}{1556109241243725144844138366982159441} a^{10} + \frac{95629696611649878942799609901280347}{222301320177675020692019766711737063} a^{9} + \frac{152455672105748760662323193413611419}{1556109241243725144844138366982159441} a^{8} + \frac{548919760453238562405944042775386841}{1556109241243725144844138366982159441} a^{7} - \frac{14927587698389127357118313341947600}{31757331453953574384574252387391009} a^{6} - \frac{36114473539915156222964991025922801}{222301320177675020692019766711737063} a^{5} + \frac{10904580880539202143027727801800250}{1556109241243725144844138366982159441} a^{4} - \frac{67161731245942759671946860910352674}{222301320177675020692019766711737063} a^{3} - \frac{765707958205013782080822904525872832}{1556109241243725144844138366982159441} a^{2} - \frac{560559508921725787653390947065717974}{1556109241243725144844138366982159441} a + \frac{18541834876725393974729559711902}{3045223564077740009479722831667631}$
Class group and class number
$C_{3}\times C_{3}\times C_{9}\times C_{9}$, which has order $729$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{98341829242963439643}{4662767561449574267795051} a^{17} - \frac{13635527181601005507}{4662767561449574267795051} a^{16} + \frac{906640970062123785069}{4662767561449574267795051} a^{15} - \frac{3898740207748743769167}{4662767561449574267795051} a^{14} + \frac{4117924112337609848535}{4662767561449574267795051} a^{13} - \frac{14405795060208774129465}{4662767561449574267795051} a^{12} + \frac{58781548369563493837023}{4662767561449574267795051} a^{11} - \frac{4366984226524593477174}{4662767561449574267795051} a^{10} - \frac{78528392529730599627139}{4662767561449574267795051} a^{9} - \frac{261823920741671999214285}{4662767561449574267795051} a^{8} - \frac{310134246229795453617006}{4662767561449574267795051} a^{7} + \frac{1560646057140659831997888}{4662767561449574267795051} a^{6} - \frac{38180945157585972609798}{4662767561449574267795051} a^{5} - \frac{2301816576018416175847098}{4662767561449574267795051} a^{4} - \frac{5186863588807920512255007}{4662767561449574267795051} a^{3} + \frac{1814162193337450914214236}{4662767561449574267795051} a^{2} + \frac{19512053718313327533272709}{4662767561449574267795051} a + \frac{14019652277350094847266545}{4662767561449574267795051} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34420157.5786797 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_3:S_3$ (as 18T23):
| A solvable group of order 54 |
| The 18 conjugacy class representatives for $C_3\times C_3:S_3$ |
| Character table for $C_3\times C_3:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.70227.1 x3, 6.0.14795494587.4, 6.0.177147.1, 6.0.1643943843.1, 6.0.14795494587.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $17$ | 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |