Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 90 x^{15} + 69 x^{14} + 225 x^{13} - 1676 x^{12} + 5337 x^{11} - 8355 x^{10} - 78 x^{9} + 17625 x^{8} - 19323 x^{7} + 283375 x^{6} - 836352 x^{5} + 1123398 x^{4} - 814854 x^{3} + 360072 x^{2} - 109404 x + 19476 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13266257117930788904129800273932288=-\,2^{12}\cdot 3^{33}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{5}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{9} - \frac{1}{6} a^{6} + \frac{1}{6} a^{3}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{10} - \frac{1}{6} a^{7} + \frac{1}{6} a^{4}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{11} - \frac{1}{6} a^{8} + \frac{1}{6} a^{5}$, $\frac{1}{666774} a^{15} - \frac{7244}{111129} a^{14} + \frac{21371}{333387} a^{13} - \frac{7919}{111129} a^{12} - \frac{32080}{333387} a^{11} + \frac{4134}{37043} a^{10} + \frac{13882}{333387} a^{9} - \frac{3200}{6537} a^{8} - \frac{31001}{333387} a^{7} - \frac{2486}{37043} a^{6} + \frac{9212}{19611} a^{5} + \frac{15805}{111129} a^{4} - \frac{9209}{74086} a^{3} + \frac{21616}{111129} a^{2} + \frac{12436}{37043} a + \frac{3003}{37043}$, $\frac{1}{30261358627794} a^{16} - \frac{19293313}{30261358627794} a^{15} + \frac{361539263423}{15130679313897} a^{14} + \frac{248029389731}{30261358627794} a^{13} + \frac{1072044585560}{15130679313897} a^{12} - \frac{734440106525}{15130679313897} a^{11} + \frac{254864350855}{1780079919282} a^{10} + \frac{1429619358977}{15130679313897} a^{9} + \frac{4927406798383}{15130679313897} a^{8} - \frac{62693874767}{4323051232542} a^{7} + \frac{2661769089697}{15130679313897} a^{6} + \frac{2283939956096}{15130679313897} a^{5} - \frac{547904489191}{5043559771299} a^{4} - \frac{182981019479}{1441017077514} a^{3} + \frac{259977509174}{720508538757} a^{2} + \frac{387761206480}{1681186590433} a + \frac{323275307135}{1681186590433}$, $\frac{1}{80542874982031950228013098} a^{17} + \frac{352134721570}{40271437491015975114006549} a^{16} - \frac{8074093794583882921}{11506124997433135746859014} a^{15} - \frac{2965185040049862636098921}{40271437491015975114006549} a^{14} - \frac{28551804524979066249553}{2368908087706822065529797} a^{13} + \frac{2196000875027568848498927}{80542874982031950228013098} a^{12} + \frac{530218361742140397116541}{4474604165668441679334061} a^{11} - \frac{2840888870587696348576981}{40271437491015975114006549} a^{10} + \frac{9083155814414427239050117}{80542874982031950228013098} a^{9} - \frac{13821461838669158688656566}{40271437491015975114006549} a^{8} - \frac{12722734613069453731219555}{40271437491015975114006549} a^{7} - \frac{16321558907081128897057}{55971421113295309400982} a^{6} - \frac{30185647810369735475115781}{80542874982031950228013098} a^{5} - \frac{6125622946877724736223543}{13423812497005325038002183} a^{4} + \frac{303430302488223731867888}{1917687499572189291143169} a^{3} - \frac{6534712436583635223971858}{13423812497005325038002183} a^{2} + \frac{665922767873751681117462}{4474604165668441679334061} a - \frac{645328623006648496291869}{4474604165668441679334061}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{7565492309725}{52363709759479773} a^{17} + \frac{125698333061045}{104727419518959546} a^{16} - \frac{83633358010321}{17454569919826591} a^{15} + \frac{1004242874454683}{104727419518959546} a^{14} - \frac{309695853131737}{104727419518959546} a^{13} - \frac{3693467852961323}{104727419518959546} a^{12} + \frac{447373245513801}{2053478814097246} a^{11} - \frac{64660059209166881}{104727419518959546} a^{10} + \frac{4695867846647923}{6160436442291738} a^{9} + \frac{61371661794996901}{104727419518959546} a^{8} - \frac{229815221989710383}{104727419518959546} a^{7} + \frac{5217642523859}{4281053816742} a^{6} - \frac{4181956669140809485}{104727419518959546} a^{5} + \frac{1624831263197158182}{17454569919826591} a^{4} - \frac{9899857547914075265}{104727419518959546} a^{3} + \frac{796060347411334117}{17454569919826591} a^{2} - \frac{239525240485617696}{17454569919826591} a + \frac{63307529338576150}{17454569919826591} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5411532426.153941 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_3:S_3$ (as 18T23):
| A solvable group of order 54 |
| The 18 conjugacy class representatives for $C_3\times C_3:S_3$ |
| Character table for $C_3\times C_3:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.867.1 x3, 6.0.236727913392.11, 6.0.2834352.4, 6.0.236727913392.10, 6.0.2255067.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | 3.6.11.14 | $x^{6} + 12 x^{3} + 18 x^{2} + 3$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ |
| 3.6.11.14 | $x^{6} + 12 x^{3} + 18 x^{2} + 3$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ | |
| 3.6.11.14 | $x^{6} + 12 x^{3} + 18 x^{2} + 3$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ | |
| $17$ | 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |