Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 90 x^{15} + 177 x^{14} - 531 x^{13} + 4408 x^{12} - 23931 x^{11} + 73689 x^{10} - 272778 x^{9} + 747021 x^{8} - 1223703 x^{7} + 1661599 x^{6} - 1645560 x^{5} + 2088558 x^{4} + 11847282 x^{3} - 23111064 x^{2} + 9854892 x + 47870076 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5623949773935752894766481334356864599994368=-\,2^{12}\cdot 3^{33}\cdot 89^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $237.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{13286} a^{15} + \frac{183}{6643} a^{14} - \frac{1294}{6643} a^{13} + \frac{89}{949} a^{12} + \frac{166}{511} a^{11} - \frac{250}{6643} a^{10} - \frac{1770}{6643} a^{9} + \frac{122}{949} a^{8} - \frac{1451}{6643} a^{7} - \frac{2658}{6643} a^{6} + \frac{2633}{6643} a^{5} + \frac{355}{6643} a^{4} + \frac{4595}{13286} a^{3} + \frac{2389}{6643} a^{2} + \frac{2573}{6643} a + \frac{2322}{6643}$, $\frac{1}{788685350582086594} a^{16} + \frac{13689117006925}{788685350582086594} a^{15} + \frac{9062320661794501}{60668103890929738} a^{14} - \frac{119821290468061061}{788685350582086594} a^{13} - \frac{88092495070901536}{394342675291043297} a^{12} + \frac{218565984259176457}{788685350582086594} a^{11} + \frac{270720439856946449}{788685350582086594} a^{10} - \frac{181371900136993012}{394342675291043297} a^{9} + \frac{65843501624437855}{788685350582086594} a^{8} + \frac{6786864029904997}{112669335797440942} a^{7} + \frac{15454152007580212}{394342675291043297} a^{6} + \frac{282136179783470521}{788685350582086594} a^{5} - \frac{156966532567573334}{394342675291043297} a^{4} + \frac{10068353005853539}{112669335797440942} a^{3} + \frac{140571737297170612}{394342675291043297} a^{2} + \frac{15594399558312017}{394342675291043297} a + \frac{74359962569451823}{394342675291043297}$, $\frac{1}{29961497018436380822182084079306608798562} a^{17} + \frac{10340963972209633000163}{29961497018436380822182084079306608798562} a^{16} + \frac{330088041609676959454298613952285758}{14980748509218190411091042039653304399281} a^{15} - \frac{4255178300334258623126226012253526537641}{29961497018436380822182084079306608798562} a^{14} - \frac{1484569183617022445142310566098191809089}{14980748509218190411091042039653304399281} a^{13} + \frac{3682975646349070237028988080720141038239}{29961497018436380822182084079306608798562} a^{12} + \frac{9496959866278208882661537014370935161799}{29961497018436380822182084079306608798562} a^{11} + \frac{3624243378125360023509781644035160422282}{14980748509218190411091042039653304399281} a^{10} - \frac{249895217719105632749608181603885522709}{2304730539879721601706314159946662215274} a^{9} - \frac{2870261580974897822775891363566010527593}{29961497018436380822182084079306608798562} a^{8} - \frac{3281038574788051298457572307573691272}{8102081400334337702050320194512333369} a^{7} - \frac{775112889316640672342508300122586473121}{4280213859776625831740297725615229828366} a^{6} + \frac{5735891247421557958995724578613535614466}{14980748509218190411091042039653304399281} a^{5} + \frac{67312269138439804576636931832032142467}{4280213859776625831740297725615229828366} a^{4} - \frac{1915387418315973426525736364228056325927}{29961497018436380822182084079306608798562} a^{3} - \frac{1068895222792240477475717882214978197573}{2140106929888312915870148862807614914183} a^{2} - \frac{5118216834883057827025920827877744259419}{14980748509218190411091042039653304399281} a + \frac{3815502814315132126008593721170704458784}{14980748509218190411091042039653304399281}$
Class group and class number
$C_{6}\times C_{6}$, which has order $36$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{402635200717080130065}{23257411928326387709138518363} a^{17} + \frac{9865926329952181670265}{46514823856652775418277036726} a^{16} - \frac{26659815560594206224063}{23257411928326387709138518363} a^{15} + \frac{164168103982423017431271}{46514823856652775418277036726} a^{14} - \frac{377039273019426674052477}{46514823856652775418277036726} a^{13} + \frac{1056019487057474890761081}{46514823856652775418277036726} a^{12} - \frac{5512979377047464860318713}{46514823856652775418277036726} a^{11} + \frac{31200796843421342289590931}{46514823856652775418277036726} a^{10} - \frac{118460973920898489841570745}{46514823856652775418277036726} a^{9} + \frac{396132869139410064995535849}{46514823856652775418277036726} a^{8} - \frac{1383729126093556884976577163}{46514823856652775418277036726} a^{7} + \frac{3137668414025033469159473265}{46514823856652775418277036726} a^{6} - \frac{5279321924139662239016826777}{46514823856652775418277036726} a^{5} + \frac{5204100648297506369799583332}{23257411928326387709138518363} a^{4} - \frac{12958491733631693219123936797}{46514823856652775418277036726} a^{3} + \frac{3202552556181132489227757141}{23257411928326387709138518363} a^{2} + \frac{17925364288553274640489080348}{23257411928326387709138518363} a - \frac{4689168988362552552859955677}{23257411928326387709138518363} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40553438788528.734 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_3:S_3$ (as 18T23):
| A solvable group of order 54 |
| The 18 conjugacy class representatives for $C_3\times C_3:S_3$ |
| Character table for $C_3\times C_3:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.23763.1 x3, Deg 6, Deg 6, 6.0.2834352.3, 6.0.1694040507.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | 3.6.11.18 | $x^{6} + 21 x^{3} + 12$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ |
| 3.6.11.18 | $x^{6} + 21 x^{3} + 12$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ | |
| 3.6.11.18 | $x^{6} + 21 x^{3} + 12$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ | |
| $89$ | 89.6.4.1 | $x^{6} + 1513 x^{3} + 1710936$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 89.6.4.1 | $x^{6} + 1513 x^{3} + 1710936$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 89.6.4.1 | $x^{6} + 1513 x^{3} + 1710936$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |