Properties

Label 18.0.716...483.1
Degree $18$
Signature $[0, 9]$
Discriminant $-7.169\times 10^{45}$
Root discriminant \(352.80\)
Ramified primes $3,17,19$
Class number $26244$ (GRH)
Class group [3, 3, 3, 3, 18, 18] (GRH)
Galois group $C_3^2:C_6$ (as 18T23)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^17 + 39*x^16 + 45*x^15 - 876*x^14 + 3330*x^13 - 20*x^12 - 18045*x^11 + 30651*x^10 + 308622*x^9 - 801240*x^8 + 228735*x^7 + 21624805*x^6 - 58489497*x^5 + 67758066*x^4 + 128113350*x^3 - 288291726*x^2 + 129533769*x + 451250391)
 
Copy content gp:K = bnfinit(y^18 - 9*y^17 + 39*y^16 + 45*y^15 - 876*y^14 + 3330*y^13 - 20*y^12 - 18045*y^11 + 30651*y^10 + 308622*y^9 - 801240*y^8 + 228735*y^7 + 21624805*y^6 - 58489497*y^5 + 67758066*y^4 + 128113350*y^3 - 288291726*y^2 + 129533769*y + 451250391, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 9*x^17 + 39*x^16 + 45*x^15 - 876*x^14 + 3330*x^13 - 20*x^12 - 18045*x^11 + 30651*x^10 + 308622*x^9 - 801240*x^8 + 228735*x^7 + 21624805*x^6 - 58489497*x^5 + 67758066*x^4 + 128113350*x^3 - 288291726*x^2 + 129533769*x + 451250391);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 - 9*x^17 + 39*x^16 + 45*x^15 - 876*x^14 + 3330*x^13 - 20*x^12 - 18045*x^11 + 30651*x^10 + 308622*x^9 - 801240*x^8 + 228735*x^7 + 21624805*x^6 - 58489497*x^5 + 67758066*x^4 + 128113350*x^3 - 288291726*x^2 + 129533769*x + 451250391)
 

\( x^{18} - 9 x^{17} + 39 x^{16} + 45 x^{15} - 876 x^{14} + 3330 x^{13} - 20 x^{12} - 18045 x^{11} + \cdots + 451250391 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $18$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 9]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-7168555859200162677766007466667663950714918483\) \(\medspace = -\,3^{33}\cdot 17^{12}\cdot 19^{12}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(352.80\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{13/6}17^{2/3}19^{2/3}\approx 508.82026534963563$
Ramified primes:   \(3\), \(17\), \(19\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-3}) \)
$\Aut(K/\Q)$:   $C_3^2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  \(\Q(\sqrt{-3}) \)

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{10547258813}a^{15}+\frac{2324979178}{10547258813}a^{14}+\frac{3578809376}{10547258813}a^{13}+\frac{2730171935}{10547258813}a^{12}+\frac{4110903137}{10547258813}a^{11}-\frac{1448458}{88632427}a^{10}-\frac{774024388}{10547258813}a^{9}-\frac{690084}{3132539}a^{8}+\frac{254772118}{620426989}a^{7}-\frac{2440695069}{10547258813}a^{6}+\frac{242869400}{811327601}a^{5}+\frac{1027737824}{10547258813}a^{4}-\frac{1043064941}{10547258813}a^{3}-\frac{5229406996}{10547258813}a^{2}-\frac{3073689043}{10547258813}a-\frac{4705476940}{10547258813}$, $\frac{1}{44\cdots 13}a^{16}-\frac{16\cdots 90}{44\cdots 13}a^{15}+\frac{72\cdots 46}{44\cdots 13}a^{14}+\frac{12\cdots 59}{26\cdots 89}a^{13}-\frac{13\cdots 80}{44\cdots 13}a^{12}-\frac{19\cdots 99}{44\cdots 13}a^{11}-\frac{17\cdots 28}{44\cdots 13}a^{10}+\frac{18\cdots 67}{44\cdots 13}a^{9}-\frac{21\cdots 45}{44\cdots 13}a^{8}+\frac{21\cdots 60}{44\cdots 13}a^{7}+\frac{10\cdots 26}{44\cdots 13}a^{6}-\frac{89\cdots 93}{44\cdots 13}a^{5}+\frac{23\cdots 67}{44\cdots 13}a^{4}+\frac{18\cdots 97}{63\cdots 59}a^{3}-\frac{43\cdots 05}{44\cdots 13}a^{2}+\frac{12\cdots 03}{44\cdots 13}a-\frac{44\cdots 40}{44\cdots 13}$, $\frac{1}{92\cdots 19}a^{17}+\frac{355}{92\cdots 19}a^{16}+\frac{19\cdots 96}{92\cdots 19}a^{15}+\frac{17\cdots 70}{92\cdots 19}a^{14}+\frac{26\cdots 99}{54\cdots 07}a^{13}-\frac{16\cdots 26}{92\cdots 19}a^{12}-\frac{14\cdots 53}{13\cdots 17}a^{11}-\frac{45\cdots 74}{92\cdots 19}a^{10}+\frac{21\cdots 29}{92\cdots 19}a^{9}+\frac{10\cdots 71}{29\cdots 49}a^{8}-\frac{87\cdots 93}{92\cdots 19}a^{7}-\frac{34\cdots 09}{92\cdots 19}a^{6}+\frac{47\cdots 09}{13\cdots 17}a^{5}+\frac{23\cdots 55}{71\cdots 63}a^{4}-\frac{15\cdots 91}{92\cdots 19}a^{3}+\frac{11\cdots 04}{71\cdots 63}a^{2}+\frac{90\cdots 44}{13\cdots 17}a+\frac{31\cdots 83}{71\cdots 63}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  $C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{18}\times C_{18}$, which has order $26244$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{18}\times C_{18}$, which has order $26244$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $8$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -\frac{85652246508}{7957781197910448463} a^{17} + \frac{53957699292}{468104776347673439} a^{16} - \frac{4681232368692}{7957781197910448463} a^{15} + \frac{2383271790810}{7957781197910448463} a^{14} + \frac{77436815281224}{7957781197910448463} a^{13} - \frac{23445927891963}{468104776347673439} a^{12} + \frac{506923560041328}{7957781197910448463} a^{11} + \frac{1197001442277462}{7957781197910448463} a^{10} - \frac{4062008220800641}{7957781197910448463} a^{9} - \frac{22284256000813080}{7957781197910448463} a^{8} + \frac{6345365462330304}{468104776347673439} a^{7} - \frac{136779849957013695}{7957781197910448463} a^{6} - \frac{1694080604608791450}{7957781197910448463} a^{5} + \frac{7794831425435136648}{7957781197910448463} a^{4} - \frac{14591997765187381049}{7957781197910448463} a^{3} + \frac{6263420755008827502}{7957781197910448463} a^{2} + \frac{20268926623431909342}{7957781197910448463} a - \frac{25865148080628118729}{7957781197910448463} \)  (order $6$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{19\cdots 81}{13\cdots 17}a^{17}-\frac{65\cdots 69}{54\cdots 07}a^{16}+\frac{42\cdots 58}{92\cdots 19}a^{15}+\frac{10\cdots 68}{92\cdots 19}a^{14}-\frac{11\cdots 41}{92\cdots 19}a^{13}+\frac{19\cdots 51}{54\cdots 07}a^{12}+\frac{31\cdots 45}{71\cdots 63}a^{11}-\frac{22\cdots 24}{92\cdots 19}a^{10}+\frac{50\cdots 90}{92\cdots 19}a^{9}+\frac{14\cdots 68}{29\cdots 49}a^{8}-\frac{39\cdots 52}{54\cdots 07}a^{7}-\frac{85\cdots 50}{92\cdots 19}a^{6}+\frac{27\cdots 95}{92\cdots 19}a^{5}-\frac{50\cdots 36}{92\cdots 19}a^{4}+\frac{69\cdots 72}{24\cdots 87}a^{3}+\frac{16\cdots 22}{92\cdots 19}a^{2}-\frac{13\cdots 51}{92\cdots 19}a-\frac{22\cdots 18}{92\cdots 19}$, $\frac{96\cdots 97}{23\cdots 51}a^{17}+\frac{14\cdots 61}{33\cdots 93}a^{16}-\frac{50\cdots 02}{23\cdots 51}a^{15}+\frac{21\cdots 60}{23\cdots 51}a^{14}+\frac{81\cdots 49}{23\cdots 51}a^{13}-\frac{43\cdots 33}{23\cdots 51}a^{12}+\frac{57\cdots 57}{23\cdots 51}a^{11}+\frac{96\cdots 10}{23\cdots 51}a^{10}-\frac{46\cdots 70}{23\cdots 51}a^{9}-\frac{75\cdots 40}{75\cdots 21}a^{8}+\frac{10\cdots 82}{23\cdots 51}a^{7}-\frac{17\cdots 78}{23\cdots 51}a^{6}-\frac{18\cdots 09}{23\cdots 51}a^{5}+\frac{80\cdots 20}{23\cdots 51}a^{4}-\frac{17\cdots 40}{23\cdots 51}a^{3}+\frac{99\cdots 14}{23\cdots 51}a^{2}+\frac{62\cdots 47}{76\cdots 93}a-\frac{40\cdots 14}{23\cdots 51}$, $\frac{47\cdots 14}{92\cdots 19}a^{17}+\frac{21\cdots 32}{13\cdots 17}a^{16}-\frac{92\cdots 18}{92\cdots 19}a^{15}-\frac{74\cdots 40}{92\cdots 19}a^{14}+\frac{10\cdots 12}{92\cdots 19}a^{13}+\frac{11\cdots 37}{92\cdots 19}a^{12}-\frac{35\cdots 02}{92\cdots 19}a^{11}-\frac{51\cdots 32}{92\cdots 19}a^{10}+\frac{26\cdots 69}{92\cdots 19}a^{9}-\frac{43\cdots 81}{29\cdots 49}a^{8}-\frac{42\cdots 02}{92\cdots 19}a^{7}-\frac{25\cdots 59}{92\cdots 19}a^{6}-\frac{92\cdots 00}{92\cdots 19}a^{5}-\frac{25\cdots 97}{92\cdots 19}a^{4}-\frac{39\cdots 21}{24\cdots 87}a^{3}-\frac{79\cdots 21}{92\cdots 19}a^{2}-\frac{20\cdots 71}{92\cdots 19}a-\frac{12\cdots 53}{92\cdots 19}$, $\frac{81\cdots 40}{13\cdots 17}a^{17}-\frac{58\cdots 77}{92\cdots 19}a^{16}+\frac{29\cdots 84}{92\cdots 19}a^{15}-\frac{25\cdots 62}{24\cdots 87}a^{14}-\frac{48\cdots 88}{92\cdots 19}a^{13}+\frac{24\cdots 67}{92\cdots 19}a^{12}-\frac{79\cdots 00}{24\cdots 87}a^{11}-\frac{69\cdots 28}{92\cdots 19}a^{10}+\frac{25\cdots 41}{92\cdots 19}a^{9}+\frac{47\cdots 85}{29\cdots 49}a^{8}-\frac{64\cdots 64}{92\cdots 19}a^{7}+\frac{90\cdots 87}{92\cdots 19}a^{6}+\frac{11\cdots 52}{92\cdots 19}a^{5}-\frac{46\cdots 09}{92\cdots 19}a^{4}+\frac{93\cdots 05}{92\cdots 19}a^{3}-\frac{19\cdots 03}{54\cdots 07}a^{2}-\frac{77\cdots 46}{54\cdots 07}a+\frac{23\cdots 58}{92\cdots 19}$, $\frac{14\cdots 34}{92\cdots 19}a^{17}+\frac{11\cdots 86}{10\cdots 09}a^{16}-\frac{32\cdots 07}{92\cdots 19}a^{15}-\frac{16\cdots 86}{92\cdots 19}a^{14}+\frac{10\cdots 82}{92\cdots 19}a^{13}-\frac{31\cdots 36}{13\cdots 17}a^{12}-\frac{79\cdots 74}{92\cdots 19}a^{11}+\frac{17\cdots 06}{92\cdots 19}a^{10}+\frac{26\cdots 33}{92\cdots 19}a^{9}-\frac{14\cdots 81}{29\cdots 49}a^{8}+\frac{13\cdots 44}{92\cdots 19}a^{7}+\frac{19\cdots 46}{92\cdots 19}a^{6}-\frac{28\cdots 34}{92\cdots 19}a^{5}+\frac{24\cdots 55}{92\cdots 19}a^{4}+\frac{62\cdots 14}{92\cdots 19}a^{3}-\frac{13\cdots 92}{92\cdots 19}a^{2}-\frac{99\cdots 19}{92\cdots 19}a+\frac{51\cdots 24}{92\cdots 19}$, $\frac{16\cdots 48}{13\cdots 17}a^{17}-\frac{12\cdots 33}{92\cdots 19}a^{16}+\frac{60\cdots 81}{92\cdots 19}a^{15}-\frac{23\cdots 52}{92\cdots 19}a^{14}-\frac{10\cdots 48}{92\cdots 19}a^{13}+\frac{51\cdots 68}{92\cdots 19}a^{12}-\frac{62\cdots 88}{89\cdots 73}a^{11}-\frac{13\cdots 08}{92\cdots 19}a^{10}+\frac{52\cdots 57}{92\cdots 19}a^{9}+\frac{74\cdots 16}{22\cdots 73}a^{8}-\frac{13\cdots 74}{92\cdots 19}a^{7}+\frac{18\cdots 15}{92\cdots 19}a^{6}+\frac{23\cdots 62}{92\cdots 19}a^{5}-\frac{97\cdots 96}{92\cdots 19}a^{4}+\frac{20\cdots 59}{92\cdots 19}a^{3}-\frac{98\cdots 97}{92\cdots 19}a^{2}-\frac{31\cdots 41}{13\cdots 17}a+\frac{42\cdots 79}{92\cdots 19}$, $\frac{11\cdots 35}{92\cdots 19}a^{17}+\frac{12\cdots 91}{92\cdots 19}a^{16}-\frac{50\cdots 90}{54\cdots 07}a^{15}+\frac{27\cdots 46}{92\cdots 19}a^{14}-\frac{34\cdots 53}{13\cdots 17}a^{13}-\frac{21\cdots 56}{92\cdots 19}a^{12}+\frac{83\cdots 11}{92\cdots 19}a^{11}-\frac{17\cdots 78}{92\cdots 19}a^{10}+\frac{30\cdots 47}{92\cdots 19}a^{9}-\frac{21\cdots 89}{42\cdots 07}a^{8}+\frac{23\cdots 68}{92\cdots 19}a^{7}-\frac{10\cdots 69}{10\cdots 09}a^{6}+\frac{21\cdots 67}{13\cdots 17}a^{5}-\frac{52\cdots 40}{92\cdots 19}a^{4}-\frac{50\cdots 99}{92\cdots 19}a^{3}+\frac{74\cdots 18}{92\cdots 19}a^{2}-\frac{10\cdots 95}{92\cdots 19}a-\frac{17\cdots 50}{13\cdots 17}$, $\frac{79\cdots 15}{92\cdots 19}a^{17}-\frac{41\cdots 75}{71\cdots 63}a^{16}+\frac{15\cdots 94}{92\cdots 19}a^{15}+\frac{56\cdots 42}{54\cdots 07}a^{14}-\frac{71\cdots 81}{13\cdots 17}a^{13}+\frac{41\cdots 64}{71\cdots 63}a^{12}+\frac{42\cdots 15}{92\cdots 19}a^{11}+\frac{93\cdots 46}{92\cdots 19}a^{10}-\frac{85\cdots 05}{92\cdots 19}a^{9}+\frac{19\cdots 57}{42\cdots 07}a^{8}+\frac{14\cdots 20}{92\cdots 19}a^{7}-\frac{25\cdots 97}{77\cdots 01}a^{6}+\frac{74\cdots 11}{13\cdots 17}a^{5}+\frac{13\cdots 38}{92\cdots 19}a^{4}-\frac{86\cdots 23}{71\cdots 63}a^{3}-\frac{12\cdots 46}{92\cdots 19}a^{2}+\frac{18\cdots 81}{54\cdots 07}a+\frac{36\cdots 58}{13\cdots 17}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 815207056414.5446 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 815207056414.5446 \cdot 26244}{6\cdot\sqrt{7168555859200162677766007466667663950714918483}}\cr\approx \mathstrut & 0.642761250966627 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^17 + 39*x^16 + 45*x^15 - 876*x^14 + 3330*x^13 - 20*x^12 - 18045*x^11 + 30651*x^10 + 308622*x^9 - 801240*x^8 + 228735*x^7 + 21624805*x^6 - 58489497*x^5 + 67758066*x^4 + 128113350*x^3 - 288291726*x^2 + 129533769*x + 451250391) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 9*x^17 + 39*x^16 + 45*x^15 - 876*x^14 + 3330*x^13 - 20*x^12 - 18045*x^11 + 30651*x^10 + 308622*x^9 - 801240*x^8 + 228735*x^7 + 21624805*x^6 - 58489497*x^5 + 67758066*x^4 + 128113350*x^3 - 288291726*x^2 + 129533769*x + 451250391, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 9*x^17 + 39*x^16 + 45*x^15 - 876*x^14 + 3330*x^13 - 20*x^12 - 18045*x^11 + 30651*x^10 + 308622*x^9 - 801240*x^8 + 228735*x^7 + 21624805*x^6 - 58489497*x^5 + 67758066*x^4 + 128113350*x^3 - 288291726*x^2 + 129533769*x + 451250391); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 9*x^17 + 39*x^16 + 45*x^15 - 876*x^14 + 3330*x^13 - 20*x^12 - 18045*x^11 + 30651*x^10 + 308622*x^9 - 801240*x^8 + 228735*x^7 + 21624805*x^6 - 58489497*x^5 + 67758066*x^4 + 128113350*x^3 - 288291726*x^2 + 129533769*x + 451250391); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3^2:C_6$ (as 18T23):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 54
The 18 conjugacy class representatives for $C_3^2:C_6$
Character table for $C_3^2:C_6$

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.1.1083.1 x3, 6.0.1928163650072427.6, 6.0.14795494587.2, 6.0.1928163650072427.5, 6.0.3518667.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 18 siblings: data not computed
Degree 27 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.6.0.1}{6} }^{3}$ R ${\href{/padicField/5.6.0.1}{6} }^{3}$ ${\href{/padicField/7.3.0.1}{3} }^{6}$ ${\href{/padicField/11.6.0.1}{6} }^{3}$ ${\href{/padicField/13.3.0.1}{3} }^{6}$ R R ${\href{/padicField/23.6.0.1}{6} }^{3}$ ${\href{/padicField/29.6.0.1}{6} }^{3}$ ${\href{/padicField/31.3.0.1}{3} }^{6}$ ${\href{/padicField/37.3.0.1}{3} }^{6}$ ${\href{/padicField/41.6.0.1}{6} }^{3}$ ${\href{/padicField/43.3.0.1}{3} }^{6}$ ${\href{/padicField/47.6.0.1}{6} }^{3}$ ${\href{/padicField/53.2.0.1}{2} }^{9}$ ${\href{/padicField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.1.6.11a1.7$x^{6} + 9 x + 3$$6$$1$$11$$S_3\times C_3$$$[2, \frac{5}{2}]_{2}$$
3.1.6.11a1.7$x^{6} + 9 x + 3$$6$$1$$11$$S_3\times C_3$$$[2, \frac{5}{2}]_{2}$$
3.1.6.11a1.7$x^{6} + 9 x + 3$$6$$1$$11$$S_3\times C_3$$$[2, \frac{5}{2}]_{2}$$
\(17\) Copy content Toggle raw display 17.2.3.4a1.2$x^{6} + 48 x^{5} + 777 x^{4} + 4384 x^{3} + 2331 x^{2} + 432 x + 44$$3$$2$$4$$S_3$$$[\ ]_{3}^{2}$$
17.2.3.4a1.2$x^{6} + 48 x^{5} + 777 x^{4} + 4384 x^{3} + 2331 x^{2} + 432 x + 44$$3$$2$$4$$S_3$$$[\ ]_{3}^{2}$$
17.2.3.4a1.2$x^{6} + 48 x^{5} + 777 x^{4} + 4384 x^{3} + 2331 x^{2} + 432 x + 44$$3$$2$$4$$S_3$$$[\ ]_{3}^{2}$$
\(19\) Copy content Toggle raw display 19.1.3.2a1.1$x^{3} + 19$$3$$1$$2$$C_3$$$[\ ]_{3}$$
19.1.3.2a1.1$x^{3} + 19$$3$$1$$2$$C_3$$$[\ ]_{3}$$
19.1.3.2a1.1$x^{3} + 19$$3$$1$$2$$C_3$$$[\ ]_{3}$$
19.1.3.2a1.1$x^{3} + 19$$3$$1$$2$$C_3$$$[\ ]_{3}$$
19.1.3.2a1.1$x^{3} + 19$$3$$1$$2$$C_3$$$[\ ]_{3}$$
19.1.3.2a1.1$x^{3} + 19$$3$$1$$2$$C_3$$$[\ ]_{3}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)