Normalized defining polynomial
\( x^{18} - 60 x^{15} + 2229 x^{12} + 3025762 x^{9} + 1020101190 x^{6} + 51364578 x^{3} + 40353607 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-59046319790637747019476233422195951296270284280622347=-\,3^{39}\cdot 19^{12}\cdot 37^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $854.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{3} - \frac{2}{9}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{4} - \frac{2}{9} a$, $\frac{1}{27} a^{8} + \frac{1}{27} a^{7} + \frac{1}{27} a^{6} - \frac{2}{27} a^{5} - \frac{2}{27} a^{4} - \frac{2}{27} a^{3} + \frac{1}{27} a^{2} + \frac{1}{27} a + \frac{1}{27}$, $\frac{1}{54} a^{9} - \frac{1}{18} a^{6} - \frac{1}{9} a^{3} - \frac{19}{54}$, $\frac{1}{54} a^{10} - \frac{1}{18} a^{7} - \frac{1}{9} a^{4} - \frac{19}{54} a$, $\frac{1}{162} a^{11} + \frac{1}{162} a^{10} + \frac{1}{162} a^{9} - \frac{1}{54} a^{8} - \frac{1}{54} a^{7} - \frac{1}{54} a^{6} - \frac{4}{27} a^{5} - \frac{4}{27} a^{4} - \frac{4}{27} a^{3} - \frac{55}{162} a^{2} - \frac{55}{162} a - \frac{55}{162}$, $\frac{1}{162} a^{12} - \frac{1}{162} a^{9} + \frac{1}{27} a^{6} - \frac{13}{162} a^{3} - \frac{37}{81}$, $\frac{1}{486} a^{13} - \frac{1}{486} a^{12} - \frac{2}{243} a^{10} + \frac{2}{243} a^{9} - \frac{7}{162} a^{7} + \frac{7}{162} a^{6} - \frac{31}{486} a^{4} + \frac{31}{486} a^{3} + \frac{55}{486} a - \frac{55}{486}$, $\frac{1}{486} a^{14} - \frac{1}{486} a^{12} - \frac{1}{486} a^{11} + \frac{1}{162} a^{10} - \frac{1}{243} a^{9} + \frac{1}{81} a^{8} - \frac{1}{18} a^{7} + \frac{7}{162} a^{6} - \frac{13}{486} a^{5} - \frac{2}{27} a^{4} + \frac{49}{486} a^{3} - \frac{118}{243} a^{2} - \frac{61}{162} a - \frac{67}{486}$, $\frac{1}{4641477349620861558} a^{15} + \frac{1510272570286664}{2320738674810430779} a^{12} - \frac{371833170129080}{43787522166234543} a^{9} - \frac{117448719223261982}{2320738674810430779} a^{6} + \frac{191603071986524921}{4641477349620861558} a^{3} + \frac{31270911931957079}{4641477349620861558}$, $\frac{1}{4776080192759866543182} a^{16} - \frac{1}{13924432048862584674} a^{15} - \frac{227698485435681808}{2388040096379933271591} a^{13} + \frac{25630549610172731}{13924432048862584674} a^{12} + \frac{106833085648392137}{90114720618110689494} a^{10} - \frac{709340216691526}{131362566498703629} a^{9} + \frac{207170377462204197137}{4776080192759866543182} a^{7} + \frac{664663859707714849}{13924432048862584674} a^{6} + \frac{389330771976619498259}{4776080192759866543182} a^{4} + \frac{749405759153746280}{6962216024431292337} a^{3} + \frac{408107503538217469906}{2388040096379933271591} a - \frac{3353487994427894413}{6962216024431292337}$, $\frac{1}{1638195506116634224311426} a^{17} - \frac{1}{13924432048862584674} a^{15} + \frac{540047505501953039419}{1638195506116634224311426} a^{14} - \frac{1510272570286664}{6962216024431292337} a^{12} - \frac{36196435063843787051}{15454674586005983248221} a^{11} + \frac{371833170129080}{131362566498703629} a^{9} - \frac{17953727145624695744839}{1638195506116634224311426} a^{8} - \frac{1}{27} a^{7} + \frac{375308571979976513}{6962216024431292337} a^{6} + \frac{58858884955288769274901}{819097753058317112155713} a^{5} + \frac{2}{27} a^{4} - \frac{1223042483013383045}{13924432048862584674} a^{3} + \frac{388292644969036020884296}{819097753058317112155713} a^{2} - \frac{1}{27} a - \frac{4157028556039389575}{13924432048862584674}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{9}\times C_{9}\times C_{9}\times C_{18}\times C_{54}$, which has order $57395628$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{54059}{12563514470838} a^{15} - \frac{29211697}{113071630237542} a^{12} + \frac{20565517}{2133426985614} a^{9} + \frac{27201571619}{2093919078473} a^{6} + \frac{248175292981436}{56535815118771} a^{3} + \frac{69061039644049}{113071630237542} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2535693926127.3457 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_3:S_3$ (as 18T23):
| A solvable group of order 54 |
| The 18 conjugacy class representatives for $C_3\times C_3:S_3$ |
| Character table for $C_3\times C_3:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.120092787.3 x3, Deg 6, 6.0.36889110963.5, 6.0.23085974187.4, 6.0.43266832468282107.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $19$ | 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $37$ | 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |