Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 90 x^{15} + 69 x^{14} + 225 x^{13} - 2756 x^{12} + 14733 x^{11} - 41133 x^{10} + 44796 x^{9} + 31989 x^{8} - 156159 x^{7} + 1476721 x^{6} - 3954150 x^{5} + 5131062 x^{4} - 3847170 x^{3} + 1822716 x^{2} - 520884 x + 66996 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-149893238403862212943036837746306920448=-\,2^{12}\cdot 3^{33}\cdot 37^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $132.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{2}{9} a^{5} + \frac{1}{9} a^{4} - \frac{4}{9} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{18} a^{12} + \frac{1}{18} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{18} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{5}{18} a^{3} + \frac{1}{3}$, $\frac{1}{18} a^{13} + \frac{1}{18} a^{10} + \frac{1}{3} a^{8} - \frac{1}{18} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{5}{18} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{18} a^{14} - \frac{1}{18} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{7}{18} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{18} a^{5} - \frac{4}{9} a^{4} - \frac{2}{9} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{2889774} a^{15} - \frac{1408}{481629} a^{14} + \frac{16538}{1444887} a^{13} + \frac{22373}{2889774} a^{12} - \frac{19793}{481629} a^{11} - \frac{36535}{1444887} a^{10} - \frac{9503}{321086} a^{9} - \frac{16582}{160543} a^{8} - \frac{471851}{1444887} a^{7} - \frac{302165}{2889774} a^{6} - \frac{161630}{481629} a^{5} - \frac{224375}{1444887} a^{4} + \frac{238723}{1444887} a^{3} + \frac{45943}{160543} a^{2} + \frac{141241}{481629} a - \frac{32531}{481629}$, $\frac{1}{14379229336374} a^{16} + \frac{200702}{7189614668187} a^{15} + \frac{13560040811}{7189614668187} a^{14} + \frac{142600973237}{7189614668187} a^{13} + \frac{332749856629}{14379229336374} a^{12} - \frac{140000966594}{7189614668187} a^{11} - \frac{149210008246}{7189614668187} a^{10} + \frac{213139686497}{4793076445458} a^{9} + \frac{2168381851222}{7189614668187} a^{8} + \frac{41094516802}{194313909951} a^{7} - \frac{4747618921453}{14379229336374} a^{6} + \frac{2173219307054}{7189614668187} a^{5} - \frac{997509987659}{14379229336374} a^{4} - \frac{4076492873461}{14379229336374} a^{3} + \frac{1121235211085}{2396538222729} a^{2} - \frac{883035544582}{2396538222729} a + \frac{140695430191}{2396538222729}$, $\frac{1}{991254021593777182113041358} a^{17} + \frac{12317873463347}{991254021593777182113041358} a^{16} + \frac{21645182329268426647}{141607717370539597444720194} a^{15} - \frac{25641159281949095939178067}{991254021593777182113041358} a^{14} + \frac{9420292691364434356917775}{495627010796888591056520679} a^{13} + \frac{8579313834891329329293590}{495627010796888591056520679} a^{12} + \frac{398289982977434774927819}{991254021593777182113041358} a^{11} - \frac{13504764018047575052030192}{495627010796888591056520679} a^{10} + \frac{4287812671237951447891577}{70803858685269798722360097} a^{9} + \frac{421225559664785929744983463}{991254021593777182113041358} a^{8} - \frac{98849244759214074637459831}{495627010796888591056520679} a^{7} - \frac{127681026413429062055274362}{495627010796888591056520679} a^{6} + \frac{9271800059980690400167505}{23601286228423266240786699} a^{5} + \frac{401534392543382747275073765}{991254021593777182113041358} a^{4} + \frac{258951282576120003684928123}{991254021593777182113041358} a^{3} + \frac{22577711887030000009406795}{55069667866320954561835631} a^{2} + \frac{47264847584917394136450829}{165209003598962863685506893} a - \frac{44060561666371839811248319}{165209003598962863685506893}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{9}$, which has order $243$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{51784871992364}{323635252456957263} a^{17} - \frac{1328905490563906}{970905757370871789} a^{16} + \frac{147655908976202}{26240696145158697} a^{15} - \frac{3840759206132648}{323635252456957263} a^{14} + \frac{5491248338790685}{970905757370871789} a^{13} + \frac{2030949844197793}{52481392290317394} a^{12} - \frac{137138408867869331}{323635252456957263} a^{11} + \frac{233845061592584852}{107878417485652421} a^{10} - \frac{10888164825063543955}{1941811514741743578} a^{9} + \frac{499513027422845450}{107878417485652421} a^{8} + \frac{7058410337807289437}{970905757370871789} a^{7} - \frac{42312706842974400517}{1941811514741743578} a^{6} + \frac{73276185866066971909}{323635252456957263} a^{5} - \frac{515893669607217327986}{970905757370871789} a^{4} + \frac{375336094325324897273}{647270504913914526} a^{3} - \frac{37667826952933503084}{107878417485652421} a^{2} + \frac{41516951539339702252}{323635252456957263} a - \frac{2350161032465792150}{107878417485652421} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25473645362.465027 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_3:S_3$ (as 18T23):
| A solvable group of order 54 |
| The 18 conjugacy class representatives for $C_3\times C_3:S_3$ |
| Character table for $C_3\times C_3:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.4107.1 x3, 6.0.5312031978672.11, 6.0.5312031978672.10, 6.0.2834352.4, 6.0.50602347.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | 3.6.11.14 | $x^{6} + 12 x^{3} + 18 x^{2} + 3$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ |
| 3.6.11.14 | $x^{6} + 12 x^{3} + 18 x^{2} + 3$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ | |
| 3.6.11.14 | $x^{6} + 12 x^{3} + 18 x^{2} + 3$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ | |
| $37$ | 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |