Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 90 x^{15} + 69 x^{14} + 225 x^{13} - 1100 x^{12} + 3825 x^{11} - 10119 x^{10} + 12342 x^{9} + 6465 x^{8} - 43155 x^{7} + 160075 x^{6} - 339732 x^{5} + 408726 x^{4} - 315030 x^{3} + 174384 x^{2} - 56916 x + 8796 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-50396986113842071567939653456703488=-\,2^{12}\cdot 3^{33}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{39026} a^{15} - \frac{3033}{39026} a^{14} - \frac{3443}{39026} a^{13} - \frac{4337}{39026} a^{12} + \frac{18101}{39026} a^{11} - \frac{7471}{39026} a^{10} - \frac{11363}{39026} a^{9} - \frac{16807}{39026} a^{8} + \frac{12531}{39026} a^{7} - \frac{14273}{39026} a^{6} - \frac{10509}{39026} a^{5} + \frac{18185}{39026} a^{4} - \frac{302}{19513} a^{3} - \frac{5125}{19513} a^{2} + \frac{1231}{19513} a - \frac{8009}{19513}$, $\frac{1}{10473932012362} a^{16} + \frac{6063944}{5236966006181} a^{15} + \frac{1457743935883}{10473932012362} a^{14} - \frac{38120378059}{616113647786} a^{13} + \frac{625791630857}{10473932012362} a^{12} + \frac{2529946653145}{10473932012362} a^{11} + \frac{98690445041}{805687077874} a^{10} + \frac{3071804915535}{10473932012362} a^{9} - \frac{2492364704343}{10473932012362} a^{8} - \frac{4358642436651}{10473932012362} a^{7} + \frac{1898185612419}{10473932012362} a^{6} - \frac{4284694191}{47393357522} a^{5} - \frac{135899429604}{402843538937} a^{4} - \frac{3581490924467}{10473932012362} a^{3} + \frac{84023637163}{308056823893} a^{2} + \frac{186956750431}{748138000883} a + \frac{1535334557045}{5236966006181}$, $\frac{1}{254117011436139765325183954} a^{17} + \frac{2927286008091}{254117011436139765325183954} a^{16} + \frac{1246728385845424712}{18151215102581411808941711} a^{15} + \frac{1535376001950655021054283}{254117011436139765325183954} a^{14} - \frac{23083690456172811588175634}{127058505718069882662591977} a^{13} + \frac{2261166526156568418485711}{127058505718069882662591977} a^{12} - \frac{64579616925516088676389505}{254117011436139765325183954} a^{11} - \frac{5412306566044056903286785}{18151215102581411808941711} a^{10} - \frac{8863795744488834086196569}{127058505718069882662591977} a^{9} + \frac{124154118458765970931060353}{254117011436139765325183954} a^{8} + \frac{24815952273939465234068021}{127058505718069882662591977} a^{7} + \frac{27818598364371403612692785}{127058505718069882662591977} a^{6} - \frac{1194779762062147839754504}{9773731209082298666353229} a^{5} + \frac{116313301597633133999825793}{254117011436139765325183954} a^{4} + \frac{2882789567927235418361293}{9773731209082298666353229} a^{3} - \frac{41984463560771382263500008}{127058505718069882662591977} a^{2} + \frac{3099865042224130738311672}{127058505718069882662591977} a - \frac{36179003722130243379063629}{127058505718069882662591977}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{9}$, which has order $243$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{171578082553251}{1051586639671072499} a^{17} - \frac{3038562993680841}{2103173279342144998} a^{16} + \frac{6435757265676459}{1051586639671072499} a^{15} - \frac{28448656216769415}{2103173279342144998} a^{14} + \frac{17337216209744769}{2103173279342144998} a^{13} + \frac{83968395693862869}{2103173279342144998} a^{12} - \frac{19262764358632593}{110693330491691842} a^{11} + \frac{1242091745224671657}{2103173279342144998} a^{10} - \frac{3228751054004764381}{2103173279342144998} a^{9} + \frac{209134996081133055}{123716075255420294} a^{8} + \frac{190635628778343399}{123716075255420294} a^{7} - \frac{14711521067150097735}{2103173279342144998} a^{6} + \frac{51948218355646448865}{2103173279342144998} a^{5} - \frac{53326581289556269446}{1051586639671072499} a^{4} + \frac{115521991623939045451}{2103173279342144998} a^{3} - \frac{38192438306715275709}{1051586639671072499} a^{2} + \frac{17436843972730930896}{1051586639671072499} a - \frac{2974682479746422357}{1051586639671072499} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 480855346.25948936 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_3:S_3$ (as 18T23):
| A solvable group of order 54 |
| The 18 conjugacy class representatives for $C_3\times C_3:S_3$ |
| Character table for $C_3\times C_3:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.1083.1 x3, 6.0.369375586992.13, 6.0.369375586992.7, 6.0.2834352.3, 6.0.3518667.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | 3.6.11.18 | $x^{6} + 21 x^{3} + 12$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ |
| 3.6.11.18 | $x^{6} + 21 x^{3} + 12$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ | |
| 3.6.11.18 | $x^{6} + 21 x^{3} + 12$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ | |
| $19$ | 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |