Normalized defining polynomial
\( x^{18} - 96 x^{15} + 3849 x^{12} + 74482 x^{9} + 224141118 x^{6} + 33589614 x^{3} + 17373979 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5225877221356918592091419443200727020071175574107=-\,3^{39}\cdot 17^{12}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $508.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 17, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{3} a^{5} + \frac{1}{9} a^{4} + \frac{2}{9} a^{3} + \frac{1}{3} a^{2} + \frac{1}{9} a - \frac{4}{9}$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{6} - \frac{2}{9} a^{5} + \frac{1}{3} a^{4} - \frac{1}{9} a^{3} + \frac{4}{9} a^{2} - \frac{1}{3} a - \frac{1}{9}$, $\frac{1}{18} a^{9} - \frac{1}{6} a^{6} + \frac{1}{3} a^{3} + \frac{5}{18}$, $\frac{1}{18} a^{10} - \frac{1}{18} a^{7} - \frac{1}{9} a^{6} - \frac{1}{3} a^{5} + \frac{4}{9} a^{4} + \frac{2}{9} a^{3} + \frac{1}{3} a^{2} + \frac{7}{18} a - \frac{4}{9}$, $\frac{1}{18} a^{11} - \frac{1}{18} a^{8} - \frac{1}{9} a^{6} + \frac{1}{9} a^{5} + \frac{1}{3} a^{4} - \frac{1}{9} a^{3} - \frac{5}{18} a^{2} - \frac{1}{3} a - \frac{1}{9}$, $\frac{1}{54} a^{12} - \frac{1}{54} a^{9} - \frac{1}{9} a^{6} - \frac{7}{54} a^{3} + \frac{11}{27}$, $\frac{1}{1998} a^{13} - \frac{20}{999} a^{10} - \frac{31}{666} a^{7} + \frac{1}{9} a^{6} + \frac{1}{3} a^{5} - \frac{175}{1998} a^{4} - \frac{2}{9} a^{3} - \frac{1}{3} a^{2} - \frac{215}{1998} a + \frac{4}{9}$, $\frac{1}{5994} a^{14} + \frac{1}{5994} a^{13} + \frac{1}{162} a^{12} + \frac{71}{5994} a^{11} + \frac{71}{5994} a^{10} - \frac{1}{162} a^{9} - \frac{34}{999} a^{8} - \frac{34}{999} a^{7} - \frac{4}{27} a^{6} - \frac{1285}{5994} a^{5} + \frac{713}{5994} a^{4} + \frac{29}{162} a^{3} + \frac{1280}{2997} a^{2} + \frac{281}{2997} a + \frac{29}{81}$, $\frac{1}{34565479885857990186} a^{15} - \frac{212471063605964537}{34565479885857990186} a^{12} + \frac{364326532387903013}{17282739942928995093} a^{9} + \frac{5706255703512743675}{34565479885857990186} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{5205150226739261101}{17282739942928995093} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{152626607025928843}{467101079538621489}$, $\frac{1}{241958359201005931302} a^{16} - \frac{39470663776845467}{241958359201005931302} a^{13} - \frac{3095681464194478387}{120979179600502965651} a^{10} + \frac{4979654024230443581}{241958359201005931302} a^{7} + \frac{1}{3} a^{5} + \frac{15031572937033224277}{120979179600502965651} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{12013599173670948967}{120979179600502965651} a - \frac{1}{3}$, $\frac{1}{62667215033060536207218} a^{17} + \frac{1857319006257519176}{31333607516530268103609} a^{14} - \frac{1675316520519712656041}{62667215033060536207218} a^{11} - \frac{61867700469741165067}{62667215033060536207218} a^{8} + \frac{1}{9} a^{6} + \frac{98969205126004574135}{62667215033060536207218} a^{5} + \frac{4}{9} a^{3} - \frac{12415539322711029092111}{31333607516530268103609} a^{2} - \frac{2}{9}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{9}\times C_{9}\times C_{27}$, which has order $177147$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{8404129}{582705033561894} a^{15} + \frac{807537797}{582705033561894} a^{12} - \frac{32407177649}{582705033561894} a^{9} - \frac{328715016388}{291352516780947} a^{6} - \frac{941011222763530}{291352516780947} a^{3} + \frac{4062354848561}{15748784690862} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2807605647887.7075 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_3:S_3$ (as 18T23):
| A solvable group of order 54 |
| The 18 conjugacy class representatives for $C_3\times C_3:S_3$ |
| Character table for $C_3\times C_3:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.25351947.3 x3, 6.0.14795494587.2, Deg 6, 6.0.2565108243.3, Deg 6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{9}$ | R | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $17$ | 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $19$ | 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |