Normalized defining polynomial
\( x^{18} - 60 x^{15} - 28551 x^{12} + 1705300 x^{9} + 313150767 x^{6} - 184875000 x^{3} + 40353607 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8969580780515349163336915861800987000000000000=-\,2^{12}\cdot 3^{39}\cdot 5^{12}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $357.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{18} a^{6} - \frac{1}{9} a^{3} + \frac{1}{18}$, $\frac{1}{18} a^{7} - \frac{1}{9} a^{4} + \frac{1}{18} a$, $\frac{1}{54} a^{8} + \frac{1}{54} a^{7} + \frac{1}{54} a^{6} - \frac{1}{27} a^{5} - \frac{1}{27} a^{4} - \frac{1}{27} a^{3} + \frac{1}{54} a^{2} + \frac{1}{54} a + \frac{1}{54}$, $\frac{1}{108} a^{9} - \frac{1}{36} a^{6} + \frac{1}{36} a^{3} - \frac{1}{108}$, $\frac{1}{108} a^{10} - \frac{1}{36} a^{7} + \frac{1}{36} a^{4} - \frac{1}{108} a$, $\frac{1}{324} a^{11} + \frac{1}{324} a^{10} + \frac{1}{324} a^{9} - \frac{1}{108} a^{8} - \frac{1}{108} a^{7} - \frac{1}{108} a^{6} + \frac{1}{108} a^{5} + \frac{1}{108} a^{4} + \frac{1}{108} a^{3} - \frac{1}{324} a^{2} - \frac{1}{324} a - \frac{1}{324}$, $\frac{1}{326916} a^{12} + \frac{779}{326916} a^{9} + \frac{2501}{108972} a^{6} - \frac{33007}{326916} a^{3} + \frac{13471}{81729}$, $\frac{1}{980748} a^{13} - \frac{1}{980748} a^{12} + \frac{779}{980748} a^{10} - \frac{779}{980748} a^{9} - \frac{3553}{326916} a^{7} + \frac{3553}{326916} a^{6} + \frac{112289}{980748} a^{4} - \frac{112289}{980748} a^{3} - \frac{36625}{490374} a + \frac{36625}{490374}$, $\frac{1}{980748} a^{14} - \frac{1}{980748} a^{12} + \frac{779}{980748} a^{11} - \frac{779}{980748} a^{9} + \frac{2501}{326916} a^{8} + \frac{1}{54} a^{7} - \frac{8555}{326916} a^{6} + \frac{75965}{980748} a^{5} - \frac{1}{27} a^{4} - \frac{39641}{980748} a^{3} - \frac{13772}{245187} a^{2} + \frac{1}{54} a + \frac{18463}{490374}$, $\frac{1}{15656247196344} a^{15} - \frac{12003005}{15656247196344} a^{12} - \frac{1228492240}{1957030899543} a^{9} + \frac{47756813059}{1957030899543} a^{6} + \frac{1004126499191}{15656247196344} a^{3} + \frac{2642949232301}{15656247196344}$, $\frac{1}{16110278365037976} a^{16} - \frac{1}{46968741589032} a^{15} - \frac{7674520445}{16110278365037976} a^{13} + \frac{59893739}{46968741589032} a^{12} - \frac{1757259871387}{8055139182518988} a^{10} + \frac{48025017881}{11742185397258} a^{9} - \frac{80524949700677}{8055139182518988} a^{7} - \frac{114406520681}{11742185397258} a^{6} + \frac{381345295989293}{16110278365037976} a^{4} - \frac{7368709266323}{46968741589032} a^{3} - \frac{295286695812985}{16110278365037976} a + \frac{5011378892185}{46968741589032}$, $\frac{1}{5525825479208025768} a^{17} - \frac{1}{46968741589032} a^{15} + \frac{912210698227}{5525825479208025768} a^{14} - \frac{35887729}{46968741589032} a^{12} - \frac{2278785279998065}{2762912739604012884} a^{11} - \frac{1}{324} a^{10} - \frac{13739471933}{23484370794516} a^{9} - \frac{806314387232885}{2762912739604012884} a^{8} - \frac{1}{108} a^{7} + \frac{64206414617}{23484370794516} a^{6} + \frac{451835352393214649}{5525825479208025768} a^{5} + \frac{1}{36} a^{4} - \frac{1162980063869}{46968741589032} a^{3} + \frac{2448708823190296007}{5525825479208025768} a^{2} - \frac{5}{324} a - \frac{4353702032249}{46968741589032}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{6}\times C_{18}$, which has order $8748$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{73689288} a^{15} + \frac{545}{663203592} a^{12} + \frac{63995}{165800898} a^{9} - \frac{141985}{6140774} a^{6} - \frac{2804676875}{663203592} a^{3} + \frac{1158532651}{663203592} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4411949748464.114 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_3:S_3$ (as 18T23):
| A solvable group of order 54 |
| The 18 conjugacy class representatives for $C_3\times C_3:S_3$ |
| Character table for $C_3\times C_3:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.87723.1 x3, Deg 6, Deg 6, 6.0.196830000.3, 6.0.23085974187.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $19$ | 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |