Normalized defining polynomial
\( x^{18} - 60x^{15} - 28551x^{12} + 1705300x^{9} + 313150767x^{6} - 184875000x^{3} + 40353607 \)
Invariants
Degree: | $18$ |
| |
Signature: | $[0, 9]$ |
| |
Discriminant: |
\(-8969580780515349163336915861800987000000000000\)
\(\medspace = -\,2^{12}\cdot 3^{39}\cdot 5^{12}\cdot 19^{12}\)
|
| |
Root discriminant: | \(357.22\) |
| |
Galois root discriminant: | $2^{2/3}3^{121/54}5^{2/3}19^{2/3}\approx 387.502136220015$ | ||
Ramified primes: |
\(2\), \(3\), \(5\), \(19\)
|
| |
Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
$\Aut(K/\Q)$: | $C_3^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-3}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3}a^{3}-\frac{1}{3}$, $\frac{1}{3}a^{4}-\frac{1}{3}a$, $\frac{1}{3}a^{5}-\frac{1}{3}a^{2}$, $\frac{1}{18}a^{6}-\frac{1}{9}a^{3}+\frac{1}{18}$, $\frac{1}{18}a^{7}-\frac{1}{9}a^{4}+\frac{1}{18}a$, $\frac{1}{54}a^{8}+\frac{1}{54}a^{7}+\frac{1}{54}a^{6}-\frac{1}{27}a^{5}-\frac{1}{27}a^{4}-\frac{1}{27}a^{3}+\frac{1}{54}a^{2}+\frac{1}{54}a+\frac{1}{54}$, $\frac{1}{108}a^{9}-\frac{1}{36}a^{6}+\frac{1}{36}a^{3}-\frac{1}{108}$, $\frac{1}{108}a^{10}-\frac{1}{36}a^{7}+\frac{1}{36}a^{4}-\frac{1}{108}a$, $\frac{1}{324}a^{11}+\frac{1}{324}a^{10}+\frac{1}{324}a^{9}-\frac{1}{108}a^{8}-\frac{1}{108}a^{7}-\frac{1}{108}a^{6}+\frac{1}{108}a^{5}+\frac{1}{108}a^{4}+\frac{1}{108}a^{3}-\frac{1}{324}a^{2}-\frac{1}{324}a-\frac{1}{324}$, $\frac{1}{326916}a^{12}+\frac{779}{326916}a^{9}+\frac{2501}{108972}a^{6}-\frac{33007}{326916}a^{3}+\frac{13471}{81729}$, $\frac{1}{980748}a^{13}-\frac{1}{980748}a^{12}+\frac{779}{980748}a^{10}-\frac{779}{980748}a^{9}-\frac{3553}{326916}a^{7}+\frac{3553}{326916}a^{6}+\frac{112289}{980748}a^{4}-\frac{112289}{980748}a^{3}-\frac{36625}{490374}a+\frac{36625}{490374}$, $\frac{1}{980748}a^{14}-\frac{1}{980748}a^{12}+\frac{779}{980748}a^{11}-\frac{779}{980748}a^{9}+\frac{2501}{326916}a^{8}+\frac{1}{54}a^{7}-\frac{8555}{326916}a^{6}+\frac{75965}{980748}a^{5}-\frac{1}{27}a^{4}-\frac{39641}{980748}a^{3}-\frac{13772}{245187}a^{2}+\frac{1}{54}a+\frac{18463}{490374}$, $\frac{1}{15656247196344}a^{15}-\frac{12003005}{15656247196344}a^{12}-\frac{1228492240}{1957030899543}a^{9}+\frac{47756813059}{1957030899543}a^{6}+\frac{1004126499191}{15656247196344}a^{3}+\frac{2642949232301}{15656247196344}$, $\frac{1}{16\cdots 76}a^{16}-\frac{1}{46968741589032}a^{15}-\frac{7674520445}{16\cdots 76}a^{13}+\frac{59893739}{46968741589032}a^{12}-\frac{1757259871387}{80\cdots 88}a^{10}+\frac{48025017881}{11742185397258}a^{9}-\frac{80524949700677}{80\cdots 88}a^{7}-\frac{114406520681}{11742185397258}a^{6}+\frac{381345295989293}{16\cdots 76}a^{4}-\frac{7368709266323}{46968741589032}a^{3}-\frac{295286695812985}{16\cdots 76}a+\frac{5011378892185}{46968741589032}$, $\frac{1}{55\cdots 68}a^{17}-\frac{1}{46968741589032}a^{15}+\frac{912210698227}{55\cdots 68}a^{14}-\frac{35887729}{46968741589032}a^{12}-\frac{22\cdots 65}{27\cdots 84}a^{11}-\frac{1}{324}a^{10}-\frac{13739471933}{23484370794516}a^{9}-\frac{806314387232885}{27\cdots 84}a^{8}-\frac{1}{108}a^{7}+\frac{64206414617}{23484370794516}a^{6}+\frac{45\cdots 49}{55\cdots 68}a^{5}+\frac{1}{36}a^{4}-\frac{1162980063869}{46968741589032}a^{3}+\frac{24\cdots 07}{55\cdots 68}a^{2}-\frac{5}{324}a-\frac{4353702032249}{46968741589032}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
Ideal class group: | $C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{6}\times C_{18}$, which has order $8748$ (assuming GRH) |
| |
Narrow class group: | $C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{6}\times C_{18}$, which has order $8748$ (assuming GRH) |
|
Unit group
Rank: | $8$ |
| |
Torsion generator: |
\( -\frac{1}{73689288} a^{15} + \frac{545}{663203592} a^{12} + \frac{63995}{165800898} a^{9} - \frac{141985}{6140774} a^{6} - \frac{2804676875}{663203592} a^{3} + \frac{1158532651}{663203592} \)
(order $6$)
|
| |
Fundamental units: |
$\frac{81230204768}{23\cdots 07}a^{17}-\frac{1070863769}{26\cdots 96}a^{16}-\frac{4828997311351}{23\cdots 07}a^{14}+\frac{15978233134}{671261598543249}a^{13}-\frac{23\cdots 27}{23\cdots 07}a^{11}+\frac{15304028781899}{13\cdots 98}a^{10}+\frac{13\cdots 24}{23\cdots 07}a^{8}-\frac{454676951737804}{671261598543249}a^{7}+\frac{25\cdots 97}{23\cdots 07}a^{5}-\frac{33\cdots 45}{26\cdots 96}a^{4}-\frac{32\cdots 39}{23\cdots 07}a^{2}+\frac{29\cdots 32}{671261598543249}a-19$, $\frac{226199756467}{92\cdots 28}a^{17}+\frac{64943750}{671261598543249}a^{16}-\frac{13606658783651}{92\cdots 28}a^{14}-\frac{15767075437}{26\cdots 96}a^{13}-\frac{32\cdots 59}{46\cdots 14}a^{11}-\frac{3703721514155}{13\cdots 98}a^{10}+\frac{19\cdots 37}{46\cdots 14}a^{8}+\frac{111979577183083}{671261598543249}a^{7}+\frac{70\cdots 83}{92\cdots 28}a^{5}+\frac{40\cdots 05}{13\cdots 98}a^{4}-\frac{53\cdots 39}{92\cdots 28}a^{2}-\frac{93\cdots 71}{26\cdots 96}a-19$, $\frac{588702725705}{18\cdots 56}a^{17}+\frac{83784265}{149169244120722}a^{16}-\frac{13}{18422322}a^{15}-\frac{34656158318101}{18\cdots 56}a^{14}-\frac{5013397297}{149169244120722}a^{13}+\frac{7085}{165800898}a^{12}-\frac{21\cdots 95}{23\cdots 07}a^{11}-\frac{1197120980008}{74584622060361}a^{10}+\frac{1663870}{82900449}a^{9}+\frac{12\cdots 89}{23\cdots 07}a^{8}+\frac{71346459917206}{74584622060361}a^{7}-\frac{3691610}{3070387}a^{6}+\frac{18\cdots 75}{18\cdots 56}a^{5}+\frac{26\cdots 65}{149169244120722}a^{4}-\frac{36460799375}{165800898}a^{3}+\frac{10\cdots 77}{18\cdots 56}a^{2}-\frac{15\cdots 99}{149169244120722}a+\frac{11579105605}{165800898}$, $\frac{406265155735}{30\cdots 76}a^{17}+\frac{312034505}{315887811079176}a^{16}+\frac{13}{18422322}a^{15}-\frac{24226302993283}{30\cdots 76}a^{14}-\frac{18634692079}{315887811079176}a^{13}-\frac{7085}{165800898}a^{12}-\frac{967406445130550}{25\cdots 23}a^{11}-\frac{1114178038766}{39485976384897}a^{10}-\frac{1663870}{82900449}a^{9}+\frac{17\cdots 19}{76\cdots 69}a^{8}+\frac{132324273531901}{78971952769794}a^{7}+\frac{3691610}{3070387}a^{6}+\frac{12\cdots 61}{30\cdots 76}a^{5}+\frac{97\cdots 35}{315887811079176}a^{4}+\frac{36460799375}{165800898}a^{3}-\frac{99\cdots 83}{10\cdots 92}a^{2}-\frac{27\cdots 73}{315887811079176}a-\frac{11579105605}{165800898}$, $\frac{17\cdots 99}{90\cdots 88}a^{17}-\frac{28\cdots 01}{16\cdots 76}a^{16}+\frac{142299959642051}{23484370794516}a^{15}+\frac{29\cdots 05}{90\cdots 88}a^{14}-\frac{23\cdots 07}{16\cdots 76}a^{13}+\frac{10\cdots 81}{11742185397258}a^{12}-\frac{16\cdots 23}{22\cdots 22}a^{11}+\frac{14\cdots 07}{40\cdots 94}a^{10}-\frac{57\cdots 49}{23484370794516}a^{9}-\frac{62\cdots 50}{11\cdots 61}a^{8}+\frac{67\cdots 11}{20\cdots 47}a^{7}-\frac{13\cdots 63}{23484370794516}a^{6}+\frac{29\cdots 29}{90\cdots 88}a^{5}-\frac{32\cdots 75}{16\cdots 76}a^{4}+\frac{41\cdots 05}{11742185397258}a^{3}-\frac{64\cdots 73}{90\cdots 88}a^{2}+\frac{70\cdots 35}{16\cdots 76}a-\frac{17\cdots 19}{23484370794516}$, $\frac{12\cdots 09}{55\cdots 68}a^{17}-\frac{17\cdots 07}{16\cdots 76}a^{16}-\frac{45\cdots 91}{46968741589032}a^{15}-\frac{18\cdots 37}{55\cdots 68}a^{14}+\frac{32\cdots 25}{16\cdots 76}a^{13}+\frac{79\cdots 57}{46968741589032}a^{12}-\frac{44\cdots 71}{13\cdots 42}a^{11}+\frac{35\cdots 33}{80\cdots 88}a^{10}+\frac{51\cdots 24}{5871092698629}a^{9}+\frac{46\cdots 11}{69\cdots 21}a^{8}-\frac{20\cdots 49}{80\cdots 88}a^{7}-\frac{15\cdots 35}{5871092698629}a^{6}+\frac{23\cdots 55}{55\cdots 68}a^{5}+\frac{19\cdots 81}{16\cdots 76}a^{4}+\frac{63\cdots 47}{46968741589032}a^{3}-\frac{82\cdots 63}{55\cdots 68}a^{2}+\frac{71\cdots 85}{16\cdots 76}a-\frac{13\cdots 77}{46968741589032}$, $\frac{29\cdots 91}{90\cdots 88}a^{17}+\frac{28\cdots 01}{16\cdots 76}a^{16}+\frac{440074827812447}{46968741589032}a^{15}+\frac{26\cdots 57}{90\cdots 88}a^{14}+\frac{23\cdots 07}{16\cdots 76}a^{13}+\frac{32\cdots 51}{46968741589032}a^{12}-\frac{27\cdots 13}{45\cdots 44}a^{11}-\frac{14\cdots 07}{40\cdots 94}a^{10}-\frac{48\cdots 53}{23484370794516}a^{9}-\frac{26\cdots 95}{45\cdots 44}a^{8}-\frac{67\cdots 11}{20\cdots 47}a^{7}-\frac{44\cdots 01}{23484370794516}a^{6}+\frac{31\cdots 27}{90\cdots 88}a^{5}+\frac{32\cdots 75}{16\cdots 76}a^{4}+\frac{52\cdots 07}{46968741589032}a^{3}-\frac{69\cdots 11}{90\cdots 88}a^{2}-\frac{70\cdots 35}{16\cdots 76}a-\frac{11\cdots 09}{46968741589032}$, $\frac{15\cdots 74}{11\cdots 61}a^{17}-\frac{28\cdots 01}{16\cdots 76}a^{16}+\frac{155474908528345}{46968741589032}a^{15}+\frac{65\cdots 13}{22\cdots 22}a^{14}-\frac{23\cdots 07}{16\cdots 76}a^{13}-\frac{10\cdots 73}{46968741589032}a^{12}+\frac{49\cdots 33}{45\cdots 44}a^{11}+\frac{14\cdots 07}{40\cdots 94}a^{10}-\frac{10\cdots 51}{5871092698629}a^{9}-\frac{19\cdots 95}{45\cdots 44}a^{8}+\frac{67\cdots 11}{20\cdots 47}a^{7}-\frac{15\cdots 69}{11742185397258}a^{6}+\frac{11\cdots 99}{45\cdots 44}a^{5}-\frac{32\cdots 75}{16\cdots 76}a^{4}+\frac{35\cdots 87}{46968741589032}a^{3}-\frac{24\cdots 19}{45\cdots 44}a^{2}+\frac{70\cdots 35}{16\cdots 76}a-\frac{77\cdots 71}{46968741589032}$
|
| |
Regulator: | \( 4411949748464.114 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 4411949748464.114 \cdot 8748}{6\cdot\sqrt{8969580780515349163336915861800987000000000000}}\cr\approx \mathstrut & 1.03662295991021 \end{aligned}\] (assuming GRH)
Galois group
$C_3^2:C_6$ (as 18T23):
A solvable group of order 54 |
The 18 conjugacy class representatives for $C_3^2:C_6$ |
Character table for $C_3^2:C_6$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 3.1.87723.1 x3, 6.0.230859741870000.13, 6.0.230859741870000.12, 6.0.196830000.3, 6.0.23085974187.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 18 siblings: | data not computed |
Degree 27 sibling: | data not computed |
Minimal sibling: | 18.0.996620086723927684815212873533443000000000000.3 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.3.0.1}{3} }^{6}$ | ${\href{/padicField/11.6.0.1}{6} }^{3}$ | ${\href{/padicField/13.3.0.1}{3} }^{6}$ | ${\href{/padicField/17.2.0.1}{2} }^{9}$ | R | ${\href{/padicField/23.6.0.1}{6} }^{3}$ | ${\href{/padicField/29.6.0.1}{6} }^{3}$ | ${\href{/padicField/31.3.0.1}{3} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }^{9}$ | ${\href{/padicField/37.3.0.1}{3} }^{6}$ | ${\href{/padicField/41.6.0.1}{6} }^{3}$ | ${\href{/padicField/43.3.0.1}{3} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }^{9}$ | ${\href{/padicField/47.6.0.1}{6} }^{3}$ | ${\href{/padicField/53.2.0.1}{2} }^{9}$ | ${\href{/padicField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.3.4a1.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 5 x + 1$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ |
2.2.3.4a1.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 5 x + 1$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ | |
2.2.3.4a1.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 5 x + 1$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ | |
\(3\)
| 3.1.18.39c2.65 | $x^{18} + 3 x^{15} + 6 x^{12} + 9 x^{9} + 9 x^{8} + 9 x^{5} + 18 x^{4} + 3$ | $18$ | $1$ | $39$ | not computed | not computed |
\(5\)
| 5.2.3.4a1.1 | $x^{6} + 12 x^{5} + 54 x^{4} + 112 x^{3} + 108 x^{2} + 53 x + 8$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ |
5.2.3.4a1.1 | $x^{6} + 12 x^{5} + 54 x^{4} + 112 x^{3} + 108 x^{2} + 53 x + 8$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ | |
5.2.3.4a1.1 | $x^{6} + 12 x^{5} + 54 x^{4} + 112 x^{3} + 108 x^{2} + 53 x + 8$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ | |
\(19\)
| 19.1.3.2a1.3 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
19.1.3.2a1.3 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
19.1.3.2a1.3 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
19.1.3.2a1.3 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
19.1.3.2a1.3 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
19.1.3.2a1.3 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |