Learn more

Refine search


Results (1-50 of 88 matches)

Next   displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
169.a.169.1 169.a \( 13^{2} \) $0$ $\Z/19\Z$ \(\mathrm{M}_2(\Q)\) $[4,793,3757,-21632]$ $[1,-33,-43,-283,-169]$ $[-\frac{1}{169},\frac{33}{169},\frac{43}{169}]$ $y^2 + (x^3 + x + 1)y = x^5 + x^4$
196.a.21952.1 196.a \( 2^{2} \cdot 7^{2} \) $0$ $\Z/6\Z\oplus\Z/6\Z$ \(\mathrm{M}_2(\Q)\) $[1340,1345,149855,2809856]$ $[335,4620,90160,2214800,21952]$ $[\frac{4219140959375}{21952},\frac{6203236875}{784},\frac{12905875}{28}]$ $y^2 + (x^2 + x)y = x^6 + 3x^5 + 6x^4 + 7x^3 + 6x^2 + 3x + 1$
324.a.648.1 324.a \( 2^{2} \cdot 3^{4} \) $0$ $\Z/21\Z$ \(\mathrm{M}_2(\Q)\) $[60,945,2295,82944]$ $[15,-30,140,300,648]$ $[\frac{9375}{8},-\frac{625}{4},\frac{875}{18}]$ $y^2 + (x^3 + x + 1)y = x^5 + 2x^4 + 2x^3 + x^2$
676.b.17576.1 676.b \( 2^{2} \cdot 13^{2} \) $0$ $\Z/3\Z\oplus\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[1244,1249,129167,2249728]$ $[311,3978,72332,1667692,17576]$ $[\frac{2909390022551}{17576},\frac{4602275343}{676},\frac{10349147}{26}]$ $y^2 + (x^2 + x)y = -x^6 + 3x^5 - 6x^4 + 6x^3 - 6x^2 + 3x - 1$
784.c.614656.1 784.c \( 2^{4} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[398,9016,912086,2401]$ $[796,2358,-2348,-1857293,614656]$ $[\frac{1248318403996}{2401},\frac{9291226221}{4802},-\frac{23245787}{9604}]$ $y^2 = x^5 - 4x^4 - 13x^3 - 9x^2 - x$
1296.a.20736.1 1296.a \( 2^{4} \cdot 3^{4} \) $0$ $\Z/2\Z\oplus\Z/6\Z$ \(\mathrm{M}_2(\Q)\) $[78,216,4806,81]$ $[156,438,-428,-64653,20736]$ $[4455516,\frac{160381}{2},-\frac{18083}{36}]$ $y^2 = x^5 - x^4 - 3x^3 + 4x^2 - x$
2187.a.6561.1 2187.a \( 3^{7} \) $0$ $\Z/6\Z$ \(\mathrm{M}_2(\Q)\) $[124,297,13275,3456]$ $[93,249,-239,-21057,6561]$ $[\frac{28629151}{27},\frac{2472653}{81},-\frac{229679}{729}]$ $y^2 + (x^3 + 1)y = -1$
2704.a.43264.1 2704.a \( 2^{4} \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[110,520,15470,169]$ $[220,630,-620,-133325,43264]$ $[\frac{2013137500}{169},\frac{52408125}{338},-\frac{468875}{676}]$ $y^2 = x^5 - 5x^3 - 5x^2 - x$
2916.a.5832.1 2916.a \( 2^{2} \cdot 3^{6} \) $0$ $\Z/3\Z\oplus\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[4,369,1257,-3072]$ $[3,-138,-356,-5028,-5832]$ $[-\frac{1}{24},\frac{23}{36},\frac{89}{162}]$ $y^2 + (x^3 + 1)y = x^3$
3721.a.3721.1 3721.a \( 61^{2} \) $2$ $\mathsf{trivial}$ \(\mathrm{M}_2(\Q)\) $[196,6649,304573,-476288]$ $[49,-177,-187,-10123,-3721]$ $[-\frac{282475249}{3721},\frac{20823873}{3721},\frac{448987}{3721}]$ $y^2 + (x^3 + x + 1)y = -x^4 + x^3 + 3x^2 + x$
3969.b.35721.1 3969.b \( 3^{4} \cdot 7^{2} \) $2$ $\mathsf{trivial}$ \(\mathrm{M}_2(\Q)\) $[268,2961,216951,18816]$ $[201,573,-563,-110373,35721]$ $[\frac{1350125107}{147},\frac{57445733}{441},-\frac{2527307}{3969}]$ $y^2 + (x^3 + x + 1)y = -2x^5 + 3x^4 - 3x^2$
3969.c.35721.1 3969.c \( 3^{4} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[268,2961,216951,18816]$ $[201,573,-563,-110373,35721]$ $[\frac{1350125107}{147},\frac{57445733}{441},-\frac{2527307}{3969}]$ $y^2 + (x^2 + x)y = x^5 - 5x^4 + 4x^3 - x$
5184.a.46656.1 5184.a \( 2^{6} \cdot 3^{4} \) $0$ $\Z/6\Z$ \(\mathrm{M}_2(\mathsf{CM})\) $[76,252,5160,24]$ $[228,654,-644,-143637,46656]$ $[\frac{39617584}{3},\frac{1495262}{9},-\frac{58121}{81}]$ $y^2 + x^3y = x^3 + 2$
6075.a.18225.1 6075.a \( 3^{5} \cdot 5^{2} \) $0$ $\Z/6\Z$ \(\mathrm{M}_2(\Q)\) $[164,2745,106365,-9600]$ $[123,-399,-409,-52377,-18225]$ $[-\frac{115856201}{75},\frac{9166493}{225},\frac{687529}{2025}]$ $y^2 + (x^3 + 1)y = x^3 + 1$
8281.b.405769.1 8281.b \( 7^{2} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ \(\mathrm{M}_2(\Q)\) $[2596,375193,248614093,51938432]$ $[649,1917,-1907,-1228133,405769]$ $[\frac{115139273278249}{405769},\frac{524030063733}{405769},-\frac{803230307}{405769}]$ $y^2 + (x^3 + x + 1)y = -3x^5 + 9x^4 - 7x^3 - 2x^2 + x$
8281.c.405769.1 8281.c \( 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[2596,375193,248614093,51938432]$ $[649,1917,-1907,-1228133,405769]$ $[\frac{115139273278249}{405769},\frac{524030063733}{405769},-\frac{803230307}{405769}]$ $y^2 + (x^2 + x)y = x^5 + 8x^4 + 11x^3 + 3x^2 - x$
8649.b.700569.1 8649.b \( 3^{2} \cdot 31^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[1132,73377,21088959,369024]$ $[849,2517,-2507,-2115933,700569]$ $[\frac{1815232161643}{2883},\frac{19016091893}{8649},-\frac{200783123}{77841}]$ $y^2 + (x^2 + x)y = 9x^5 + 2x^4 - 21x^3 - 22x^2 - 8x - 1$
8649.c.700569.1 8649.c \( 3^{2} \cdot 31^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[1132,73377,21088959,369024]$ $[849,2517,-2507,-2115933,700569]$ $[\frac{1815232161643}{2883},\frac{19016091893}{8649},-\frac{200783123}{77841}]$ $y^2 + (x^2 + x)y = x^5 + 9x^4 + 13x^3 + 4x^2 - x$
11881.a.11881.1 11881.a \( 109^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[484,6649,988957,1520768]$ $[121,333,-323,-37493,11881]$ $[\frac{25937424601}{11881},\frac{589929813}{11881},-\frac{4729043}{11881}]$ $y^2 + (x^2 + x)y = x^5 - 3x^4 + 2x^2 - x$
12321.a.36963.1 12321.a \( 3^{2} \cdot 37^{2} \) $2$ $\mathsf{trivial}$ \(\mathrm{M}_2(\Q)\) $[4,6697,85285,-4731264]$ $[1,-279,-1107,-19737,-36963]$ $[-\frac{1}{36963},\frac{31}{4107},\frac{41}{1369}]$ $y^2 + (x^3 + x + 1)y = x^5 + 3x^4 + 4x^3 + 2x^2$
12544.a.12544.1 12544.a \( 2^{8} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[62,112,2114,49]$ $[124,342,-332,-39533,12544]$ $[\frac{114516604}{49},\frac{5094261}{98},-\frac{79763}{196}]$ $y^2 = x^5 + 2x^4 - x^3 - 3x^2 - x$
12544.c.12544.1 12544.c \( 2^{8} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[62,112,2114,49]$ $[124,342,-332,-39533,12544]$ $[\frac{114516604}{49},\frac{5094261}{98},-\frac{79763}{196}]$ $y^2 = x^5 - 2x^4 - x^3 + 3x^2 - x$
12544.i.614656.1 12544.i \( 2^{8} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[398,9016,912086,2401]$ $[796,2358,-2348,-1857293,614656]$ $[\frac{1248318403996}{2401},\frac{9291226221}{4802},-\frac{23245787}{9604}]$ $y^2 = x^5 + 4x^4 - 13x^3 + 9x^2 - x$
13689.a.13689.1 13689.a \( 3^{4} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ \(\mathrm{M}_2(\Q)\) $[516,8073,1250613,1752192]$ $[129,357,-347,-43053,13689]$ $[\frac{441025329}{169},\frac{9461333}{169},-\frac{641603}{1521}]$ $y^2 + (x^3 + x + 1)y = x^5 - x^4 - 4x^3 - 2x^2$
13689.b.13689.1 13689.b \( 3^{4} \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[516,8073,1250613,1752192]$ $[129,357,-347,-43053,13689]$ $[\frac{441025329}{169},\frac{9461333}{169},-\frac{641603}{1521}]$ $y^2 + (x^2 + x)y = x^5 + 3x^4 + x^3 - 2x^2 - x$
15552.c.746496.1 15552.c \( 2^{6} \cdot 3^{5} \) $0$ $\Z/6\Z$ \(\mathrm{M}_2(\Q)\) $[142,1368,47940,-12]$ $[852,-2586,-2596,-2224797,-746496]$ $[-\frac{1804229351}{3},\frac{154259641}{72},\frac{3271609}{1296}]$ $y^2 + x^3y = 3x^3 + 8$
15876.b.222264.1 15876.b \( 2^{2} \cdot 3^{4} \cdot 7^{2} \) $0$ $\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[636,6129,310743,28449792]$ $[159,798,16268,487452,222264]$ $[\frac{1254586479}{2744},\frac{2828663}{196},\frac{233147}{126}]$ $y^2 + (x^3 + x + 1)y = -x^6 + 2x^5 - 4x^4 + 4x^3 - 5x^2 + 2x - 1$
17689.a.17689.1 17689.a \( 7^{2} \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[580,11305,1902565,2264192]$ $[145,405,-395,-55325,17689]$ $[\frac{64097340625}{17689},\frac{1234693125}{17689},-\frac{8304875}{17689}]$ $y^2 + (x^2 + x)y = x^5 - 4x^4 + 2x^3 + x^2 - x$
17689.b.17689.1 17689.b \( 7^{2} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ \(\mathrm{M}_2(\Q)\) $[580,11305,1902565,2264192]$ $[145,405,-395,-55325,17689]$ $[\frac{64097340625}{17689},\frac{1234693125}{17689},-\frac{8304875}{17689}]$ $y^2 + (x^3 + x + 1)y = -3x^4 - 3x^3 + x^2 + x$
18225.a.18225.1 18225.a \( 3^{6} \cdot 5^{2} \) $1$ $\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[196,1305,73965,9600]$ $[147,411,-401,-56967,18225]$ $[\frac{282475249}{75},\frac{16117913}{225},-\frac{962801}{2025}]$ $y^2 + (x^3 + 1)y = 1$
20736.a.20736.1 20736.a \( 2^{8} \cdot 3^{4} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[78,216,4806,81]$ $[156,438,-428,-64653,20736]$ $[4455516,\frac{160381}{2},-\frac{18083}{36}]$ $y^2 = x^5 + x^4 - 3x^3 - 4x^2 - x$
20736.f.186624.1 20736.f \( 2^{8} \cdot 3^{4} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[74,288,5502,3]$ $[444,1302,-1292,-567213,186624]$ $[\frac{277375828}{3},\frac{10991701}{18},-\frac{442187}{324}]$ $y^2 = x^5 - 2x^4 - 9x^3 - 7x^2 - x$
20736.g.186624.1 20736.g \( 2^{8} \cdot 3^{4} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[74,288,5502,3]$ $[444,1302,-1292,-567213,186624]$ $[\frac{277375828}{3},\frac{10991701}{18},-\frac{442187}{324}]$ $y^2 = x^5 + 2x^4 - 9x^3 + 7x^2 - x$
21316.a.42632.1 21316.a \( 2^{2} \cdot 73^{2} \) $2$ $\mathsf{trivial}$ \(\mathrm{M}_2(\Q)\) $[196,12337,588745,-5456896]$ $[49,-414,-908,-53972,-42632]$ $[-\frac{282475249}{42632},\frac{24353343}{21316},\frac{545027}{10658}]$ $y^2 + (x^3 + x + 1)y = 3x^3 + 4x^2 + x$
21904.e.350464.1 21904.e \( 2^{4} \cdot 37^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[302,5032,388574,1369]$ $[604,1782,-1772,-1061453,350464]$ $[\frac{314010903004}{1369},\frac{3067669341}{2738},-\frac{10100843}{5476}]$ $y^2 = x^5 + 3x^4 - 11x^3 + 8x^2 - x$
24649.a.24649.1 24649.a \( 157^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[676,17113,3248173,3155072]$ $[169,477,-467,-76613,24649]$ $[\frac{137858491849}{24649},\frac{2302387893}{24649},-\frac{13337987}{24649}]$ $y^2 + (x^2 + x)y = x^5 + 4x^4 + 3x^3 - x^2 - x$
26244.c.157464.1 26244.c \( 2^{2} \cdot 3^{8} \) $0$ $\Z/3\Z\oplus\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[60,945,2295,82944]$ $[45,-270,3780,24300,157464]$ $[\frac{9375}{8},-\frac{625}{4},\frac{875}{18}]$ $y^2 + (x^3 + 1)y = 2x^3$
26244.d.314928.1 26244.d \( 2^{2} \cdot 3^{8} \) $1$ $\Z/3\Z\oplus\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[24,189,1107,-162]$ $[72,-918,-3024,-265113,-314928]$ $[-6144,1088,\frac{448}{9}]$ $y^2 + y = x^6 - 2x^3$
26244.e.472392.1 26244.e \( 2^{2} \cdot 3^{8} \) $0$ $\Z/3\Z\oplus\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[356,3969,419553,248832]$ $[267,1482,-2884,-741588,472392]$ $[\frac{5584059449}{1944},\frac{174127343}{2916},-\frac{5711041}{13122}]$ $y^2 + (x^3 + 1)y = 2$
32761.a.32761.1 32761.a \( 181^{2} \) $2$ $\mathsf{trivial}$ \(\mathrm{M}_2(\Q)\) $[676,41449,6681253,-4193408]$ $[169,-537,-547,-95203,-32761]$ $[-\frac{137858491849}{32761},\frac{2591996433}{32761},\frac{15622867}{32761}]$ $y^2 + (x^3 + x + 1)y = x^5 + 10x^2 + 19x + 10$
37636.a.602176.1 37636.a \( 2^{2} \cdot 97^{2} \) $2$ $\mathsf{trivial}$ \(\mathrm{M}_2(\Q)\) $[196,28033,1517953,-77078528]$ $[49,-1068,-4912,-345328,-602176]$ $[-\frac{282475249}{602176},\frac{31412283}{150544},\frac{737107}{37636}]$ $y^2 + (x^3 + x + 1)y = x^5 + 4x^4 + 6x^3 + 3x^2$
38416.a.614656.1 38416.a \( 2^{4} \cdot 7^{4} \) $2$ $\mathsf{trivial}$ \(\mathrm{M}_2(\Q)\) $[398,9016,912086,2401]$ $[796,2358,-2348,-1857293,614656]$ $[\frac{1248318403996}{2401},\frac{9291226221}{4802},-\frac{23245787}{9604}]$ $y^2 = x^6 - 3x^5 - x^4 + 7x^3 - x^2 - 3x + 1$
43264.c.43264.1 43264.c \( 2^{8} \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[110,520,15470,169]$ $[220,630,-620,-133325,43264]$ $[\frac{2013137500}{169},\frac{52408125}{338},-\frac{468875}{676}]$ $y^2 = x^5 - 5x^3 + 5x^2 - x$
46656.c.93312.1 46656.c \( 2^{6} \cdot 3^{6} \) $1$ $\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[44,9,357,48]$ $[132,672,-1264,-154608,93312]$ $[\frac{1288408}{3},\frac{149072}{9},-\frac{19118}{81}]$ $y^2 + x^3y = x^3 - 1$
48841.b.830297.1 48841.b \( 13^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ \(\mathrm{M}_2(\Q)\) $[764,10777,650195,106278016]$ $[191,1071,30923,1189813,830297]$ $[\frac{254194901951}{830297},\frac{438975873}{48841},\frac{3903467}{2873}]$ $y^2 + (x^3 + x + 1)y = -x^6 + 2x^5 - 5x^4 + 6x^3 - 6x^2 + 2x - 1$
52441.a.52441.1 52441.a \( 229^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[964,41449,10706437,6712448]$ $[241,693,-683,-161213,52441]$ $[\frac{812990017201}{52441},\frac{9700282053}{52441},-\frac{39669323}{52441}]$ $y^2 + (x^2 + x)y = x^5 + 5x^4 + 5x^3 - x$
59049.a.177147.1 59049.a \( 3^{10} \) $1$ $\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[52,-63,-111,384]$ $[117,783,-2079,-214083,177147]$ $[\frac{371293}{3},\frac{63713}{9},-\frac{13013}{81}]$ $y^2 + (x^3 + 1)y = x^3 - 1$
62208.n.746496.1 62208.n \( 2^{8} \cdot 3^{5} \) $0$ $\Z/6\Z$ \(\mathrm{M}_2(\Q)\) $[142,1368,47940,-12]$ $[852,-2586,-2596,-2224797,-746496]$ $[-\frac{1804229351}{3},\frac{154259641}{72},\frac{3271609}{1296}]$ $y^2 = x^6 - 3x^3 + 2$
72900.a.291600.1 72900.a \( 2^{2} \cdot 3^{6} \cdot 5^{2} \) $1$ $\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[184,1845,87015,150]$ $[552,1626,-1616,-883977,291600]$ $[\frac{13181630464}{75},\frac{211024448}{225},-\frac{3419456}{2025}]$ $y^2 + y = x^6 - 2x^3 + 1$
72900.b.291600.1 72900.b \( 2^{2} \cdot 3^{6} \cdot 5^{2} \) $0$ $\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[184,1845,87015,150]$ $[552,1626,-1616,-883977,291600]$ $[\frac{13181630464}{75},\frac{211024448}{225},-\frac{3419456}{2025}]$ $y^2 + x^3y = 2x^3 + 5$
Next   displayed columns for results