Minimal equation
Minimal equation
Simplified equation
$y^2 + (x^3 + x + 1)y = -x^6 + 2x^5 - 5x^4 + 6x^3 - 6x^2 + 2x - 1$ | (homogenize, simplify) |
$y^2 + (x^3 + xz^2 + z^3)y = -x^6 + 2x^5z - 5x^4z^2 + 6x^3z^3 - 6x^2z^4 + 2xz^5 - z^6$ | (dehomogenize, simplify) |
$y^2 = -3x^6 + 8x^5 - 18x^4 + 26x^3 - 23x^2 + 10x - 3$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(48841\) | \(=\) | \( 13^{2} \cdot 17^{2} \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(-830297\) | \(=\) | \( - 13^{2} \cdot 17^{3} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(764\) | \(=\) | \( 2^{2} \cdot 191 \) |
\( I_4 \) | \(=\) | \(10777\) | \(=\) | \( 13 \cdot 829 \) |
\( I_6 \) | \(=\) | \(650195\) | \(=\) | \( 5 \cdot 7 \cdot 13 \cdot 1429 \) |
\( I_{10} \) | \(=\) | \(106278016\) | \(=\) | \( 2^{7} \cdot 13^{2} \cdot 17^{3} \) |
\( J_2 \) | \(=\) | \(191\) | \(=\) | \( 191 \) |
\( J_4 \) | \(=\) | \(1071\) | \(=\) | \( 3^{2} \cdot 7 \cdot 17 \) |
\( J_6 \) | \(=\) | \(30923\) | \(=\) | \( 17^{2} \cdot 107 \) |
\( J_8 \) | \(=\) | \(1189813\) | \(=\) | \( 17^{2} \cdot 23 \cdot 179 \) |
\( J_{10} \) | \(=\) | \(830297\) | \(=\) | \( 13^{2} \cdot 17^{3} \) |
\( g_1 \) | \(=\) | \(254194901951/830297\) | ||
\( g_2 \) | \(=\) | \(438975873/48841\) | ||
\( g_3 \) | \(=\) | \(3903467/2873\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_6$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $D_6$ |
|
Rational points
Number of rational Weierstrass points: \(0\)
This curve is locally solvable except over $\R$, $\Q_{2}$, and $\Q_{17}$.
Mordell-Weil group of the Jacobian
Group structure: trivial
2-torsion field: 6.0.53139008.1
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(0\) |
Regulator: | \( 1 \) |
Real period: | \( 4.401272 \) |
Tamagawa product: | \( 1 \) |
Torsion order: | \( 1 \) |
Leading coefficient: | \( 4.401272 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(13\) | \(2\) | \(2\) | \(1\) | \(1\) | \(1 + 2 T + 13 T^{2}\) | yes | |
\(17\) | \(2\) | \(3\) | \(1\) | \(1\) | \(1 - T + T^{2}\) | yes |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.40.3 | no |
\(3\) | 3.480.12 | no |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $E_6$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over the number field \(\Q (b) \simeq \) \(\Q(\zeta_{13})^+\) with defining polynomial:
\(x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 3 x - 1\)
Decomposes up to isogeny as the square of the elliptic curve isogeny class:
\(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
\(g_4 = \frac{15771}{16} b^{5} - \frac{4229}{2} b^{4} - \frac{40285}{16} b^{3} + \frac{54719}{8} b^{2} - \frac{7461}{4} b - \frac{3507}{4}\)
\(g_6 = \frac{6976775}{64} b^{5} - \frac{3726177}{16} b^{4} - \frac{17947943}{64} b^{3} + \frac{12075635}{16} b^{2} - \frac{6510153}{32} b - \frac{6141551}{64}\)
Conductor norm: 24137569
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z [\frac{1 + \sqrt{-3}}{2}]\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\C\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\zeta_{13})^+\) with defining polynomial \(x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 3 x - 1\)
Not of \(\GL_2\)-type over \(\overline{\Q}\)
Endomorphism ring over \(\overline{\Q}\):
\(\End (J_{\overline{\Q}})\) | \(\simeq\) | an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\) |
\(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
Remainder of the endomorphism lattice by field
Over subfield \(F \simeq \) \(\Q(\sqrt{13}) \) with generator \(-a^{4} + a^{3} + 4 a^{2} - 2 a - 2\) with minimal polynomial \(x^{2} - x - 3\):
\(\End (J_{F})\) | \(\simeq\) | \(\Z [\frac{1 + \sqrt{-3}}{2}]\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C\) |
Of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) 3.3.169.1 with generator \(a^{3} - a^{2} - 3 a + 2\) with minimal polynomial \(x^{3} - x^{2} - 4 x - 1\):
\(\End (J_{F})\) | \(\simeq\) | \(\Z [\frac{1 + \sqrt{-3}}{2}]\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C\) |
Of \(\GL_2\)-type, simple