Genus 2 curves in isogeny class 72900.a
Label | Equation |
---|---|
72900.a.291600.1 | \(y^2 + y = x^6 - 2x^3 + 1\) |
L-function data
Analytic rank: | \(1\) | ||||||||||||||||||
Mordell-Weil rank: | \(1\) | ||||||||||||||||||
Bad L-factors: |
| ||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||
See L-function page for more information |
Sato-Tate group
\(\mathrm{ST} =\) $J(E_6)$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism algebra over \(\Q\):
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a)\) with defining polynomial \(x^{12} - x^{11} + x^{10} + 10 x^{9} - 5 x^{8} - x^{7} + 26 x^{6} - x^{5} - 5 x^{4} + 10 x^{3} + x^{2} - x + 1\)
Endomorphism algebra over \(\overline{\Q}\):
\(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.