Genus 2 curves in isogeny class 8649.b
Label | Equation |
---|---|
8649.b.700569.1 | \(y^2 + (x^2 + x)y = 9x^5 + 2x^4 - 21x^3 - 22x^2 - 8x - 1\) |
L-function data
Analytic rank: | \(0\) | ||||||||||||||||||||||
Mordell-Weil rank: | \(0\) | ||||||||||||||||||||||
Bad L-factors: |
| ||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||
See L-function page for more information |
Sato-Tate group
\(\mathrm{ST} =\) $E_6$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\)
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism algebra over \(\Q\):
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\C\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) 6.6.772987077.1 with defining polynomial \(x^{6} - x^{5} - 28 x^{4} + 51 x^{3} + 75 x^{2} - 98 x - 92\)
Endomorphism algebra over \(\overline{\Q}\):
\(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.