Properties

Label 12544.c.12544.1
Conductor $12544$
Discriminant $12544$
Mordell-Weil group \(\Z/{2}\Z \times \Z/{2}\Z\)
Sato-Tate group $E_6$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\mathsf{CM}\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Learn more about

Show commands for: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 = x^5 - 2x^4 - x^3 + 3x^2 - x$ (homogenize, simplify)
$y^2 = x^5z - 2x^4z^2 - x^3z^3 + 3x^2z^4 - xz^5$ (dehomogenize, simplify)
$y^2 = x^5 - 2x^4 - x^3 + 3x^2 - x$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 3, -1, -2, 1]), R([]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 3, -1, -2, 1], R![]);
 
sage: X = HyperellipticCurve(R([0, -1, 3, -1, -2, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(12544\) \(=\) \( 2^{8} \cdot 7^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(12544\) \(=\) \( 2^{8} \cdot 7^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(62\) \(=\)  \( 2 \cdot 31 \)
\( I_4 \)  \(=\) \(112\) \(=\)  \( 2^{4} \cdot 7 \)
\( I_6 \)  \(=\) \(2114\) \(=\)  \( 2 \cdot 7 \cdot 151 \)
\( I_{10} \)  \(=\) \(49\) \(=\)  \( 7^{2} \)
\( J_2 \)  \(=\) \(124\) \(=\)  \( 2^{2} \cdot 31 \)
\( J_4 \)  \(=\) \(342\) \(=\)  \( 2 \cdot 3^{2} \cdot 19 \)
\( J_6 \)  \(=\) \(-332\) \(=\)  \( - 2^{2} \cdot 83 \)
\( J_8 \)  \(=\) \(-39533\) \(=\)  \( - 13 \cdot 3041 \)
\( J_{10} \)  \(=\) \(12544\) \(=\)  \( 2^{8} \cdot 7^{2} \)
\( g_1 \)  \(=\) \(114516604/49\)
\( g_2 \)  \(=\) \(5094261/98\)
\( g_3 \)  \(=\) \(-79763/196\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_6$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $D_6$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (1 : 0 : 1)\)

magma: [C![0,0,1],C![1,0,0],C![1,0,1]];
 

Number of rational Weierstrass points: \(3\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \times \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) \((-x + z) x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\((1 : 0 : 1) - (1 : 0 : 0)\) \(x - z\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)

2-torsion field: \(\Q(\zeta_{7})^+\)

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(2\)
Regulator: \( 1 \)
Real period: \( 21.83988 \)
Tamagawa product: \( 1 \)
Torsion order:\( 4 \)
Leading coefficient: \( 1.364993 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(8\) \(8\) \(1\) \(1\)
\(7\) \(2\) \(2\) \(1\) \(1 + 4 T + 7 T^{2}\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $E_6$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b) \simeq \) \(\Q(\zeta_{28})^+\) with defining polynomial:
  \(x^{6} - 7 x^{4} + 14 x^{2} - 7\)

Decomposes up to isogeny as the square of the elliptic curve:
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = 880 b^{5} + 959 b^{4} - 4900 b^{3} - 4851 b^{2} + 6734 b + 6209\)
  \(g_6 = 41104 b^{5} + \frac{46697}{2} b^{4} - 290997 b^{3} - \frac{425957}{2} b^{2} + 465297 b + 380856\)
   Conductor norm: 4096

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\C\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\zeta_{28})^+\) with defining polynomial \(x^{6} - 7 x^{4} + 14 x^{2} - 7\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

Remainder of the endomorphism lattice by field

Over subfield \(F \simeq \) \(\Q(\sqrt{7}) \) with generator \(a^{5} - 6 a^{3} + 7 a\) with minimal polynomial \(x^{2} - 7\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_3$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) \(\Q(\zeta_{7})^+\) with generator \(a^{2} - 2\) with minimal polynomial \(x^{3} - x^{2} - 2 x + 1\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_2$
  Of \(\GL_2\)-type, simple