Minimal equation
Minimal equation
Simplified equation
$y^2 + (x^3 + x + 1)y = x^5 + 4x^4 + 6x^3 + 3x^2$ | (homogenize, simplify) |
$y^2 + (x^3 + xz^2 + z^3)y = x^5z + 4x^4z^2 + 6x^3z^3 + 3x^2z^4$ | (dehomogenize, simplify) |
$y^2 = x^6 + 4x^5 + 18x^4 + 26x^3 + 13x^2 + 2x + 1$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(37636\) | \(=\) | \( 2^{2} \cdot 97^{2} \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(-602176\) | \(=\) | \( - 2^{6} \cdot 97^{2} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(196\) | \(=\) | \( 2^{2} \cdot 7^{2} \) |
\( I_4 \) | \(=\) | \(28033\) | \(=\) | \( 17^{2} \cdot 97 \) |
\( I_6 \) | \(=\) | \(1517953\) | \(=\) | \( 97 \cdot 15649 \) |
\( I_{10} \) | \(=\) | \(-77078528\) | \(=\) | \( - 2^{13} \cdot 97^{2} \) |
\( J_2 \) | \(=\) | \(49\) | \(=\) | \( 7^{2} \) |
\( J_4 \) | \(=\) | \(-1068\) | \(=\) | \( - 2^{2} \cdot 3 \cdot 89 \) |
\( J_6 \) | \(=\) | \(-4912\) | \(=\) | \( - 2^{4} \cdot 307 \) |
\( J_8 \) | \(=\) | \(-345328\) | \(=\) | \( - 2^{4} \cdot 113 \cdot 191 \) |
\( J_{10} \) | \(=\) | \(-602176\) | \(=\) | \( - 2^{6} \cdot 97^{2} \) |
\( g_1 \) | \(=\) | \(-282475249/602176\) | ||
\( g_2 \) | \(=\) | \(31412283/150544\) | ||
\( g_3 \) | \(=\) | \(737107/37636\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_6$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $D_6$ |
|
Rational points
Known points | |||||
---|---|---|---|---|---|
\((1 : 0 : 0)\) | \((1 : -1 : 0)\) | \((0 : 0 : 1)\) | \((-1 : 0 : 1)\) | \((0 : -1 : 1)\) | \((-1 : 1 : 1)\) |
\((-3 : 2 : 1)\) | \((1 : 6 : 2)\) | \((-2 : 12 : 3)\) | \((-2 : -13 : 3)\) | \((1 : -19 : 2)\) | \((-3 : 27 : 1)\) |
Known points | |||||
---|---|---|---|---|---|
\((1 : 0 : 0)\) | \((1 : -1 : 0)\) | \((0 : 0 : 1)\) | \((-1 : 0 : 1)\) | \((0 : -1 : 1)\) | \((-1 : 1 : 1)\) |
\((-3 : 2 : 1)\) | \((1 : 6 : 2)\) | \((-2 : 12 : 3)\) | \((-2 : -13 : 3)\) | \((1 : -19 : 2)\) | \((-3 : 27 : 1)\) |
Known points | |||||
---|---|---|---|---|---|
\((1 : -1 : 0)\) | \((1 : 1 : 0)\) | \((0 : -1 : 1)\) | \((0 : 1 : 1)\) | \((-1 : -1 : 1)\) | \((-1 : 1 : 1)\) |
\((1 : -25 : 2)\) | \((1 : 25 : 2)\) | \((-3 : -25 : 1)\) | \((-3 : 25 : 1)\) | \((-2 : -25 : 3)\) | \((-2 : 25 : 3)\) |
Number of rational Weierstrass points: \(0\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z \oplus \Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-1 : 0 : 1) + (0 : 0 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0.169360\) | \(\infty\) |
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-x^3\) | \(0.169360\) | \(\infty\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-1 : 0 : 1) + (0 : 0 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0.169360\) | \(\infty\) |
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-x^3\) | \(0.169360\) | \(\infty\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-1 : -1 : 1) + (0 : 1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) | \(x (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 + xz^2 + z^3\) | \(0.169360\) | \(\infty\) |
\((0 : 1 : 1) - (1 : 1 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-x^3 + xz^2 + z^3\) | \(0.169360\) | \(\infty\) |
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | \(2\) |
Mordell-Weil rank: | \(2\) |
2-Selmer rank: | \(2\) |
Regulator: | \( 0.021512 \) |
Real period: | \( 15.40733 \) |
Tamagawa product: | \( 3 \) |
Torsion order: | \( 1 \) |
Leading coefficient: | \( 0.994335 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(2\) | \(2\) | \(6\) | \(3\) | \(1^*\) | \(1 + T + T^{2}\) | yes | |
\(97\) | \(2\) | \(2\) | \(1\) | \(1\) | \(1 + 14 T + 97 T^{2}\) | yes |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.40.3 | no |
\(3\) | 3.480.12 | no |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $E_6$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over the number field \(\Q (b) \simeq \) 6.6.8587340257.1 with defining polynomial:
\(x^{6} - x^{5} - 40 x^{4} - 45 x^{3} + 236 x^{2} + 230 x - 389\)
Decomposes up to isogeny as the square of the elliptic curve isogeny class:
\(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
\(g_4 = -\frac{780253}{376} b^{5} - \frac{3367987}{1504} b^{4} + \frac{117849811}{1504} b^{3} + \frac{385459869}{1504} b^{2} + \frac{16108321}{376} b - \frac{584419305}{1504}\)
\(g_6 = \frac{14792680517}{6016} b^{5} + \frac{15949868983}{6016} b^{4} - \frac{558559142863}{6016} b^{3} - \frac{913242130137}{3008} b^{2} - \frac{304797991689}{6016} b + \frac{173053323651}{376}\)
Conductor norm: 64
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z [\frac{1 + \sqrt{-3}}{2}]\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\C\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) 6.6.8587340257.1 with defining polynomial \(x^{6} - x^{5} - 40 x^{4} - 45 x^{3} + 236 x^{2} + 230 x - 389\)
Not of \(\GL_2\)-type over \(\overline{\Q}\)
Endomorphism ring over \(\overline{\Q}\):
\(\End (J_{\overline{\Q}})\) | \(\simeq\) | an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\) |
\(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
Remainder of the endomorphism lattice by field
Over subfield \(F \simeq \) \(\Q(\sqrt{97}) \) with generator \(-\frac{3}{47} a^{5} + \frac{10}{47} a^{4} + \frac{81}{47} a^{3} - \frac{7}{47} a^{2} - \frac{206}{47} a - \frac{84}{47}\) with minimal polynomial \(x^{2} - x - 24\):
\(\End (J_{F})\) | \(\simeq\) | \(\Z [\frac{1 + \sqrt{-3}}{2}]\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C\) |
Of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) 3.3.9409.1 with generator \(-\frac{9}{188} a^{5} + \frac{15}{94} a^{4} + \frac{145}{94} a^{3} - \frac{209}{188} a^{2} - \frac{1699}{188} a + \frac{453}{188}\) with minimal polynomial \(x^{3} - x^{2} - 32 x + 79\):
\(\End (J_{F})\) | \(\simeq\) | \(\Z [\frac{1 + \sqrt{-3}}{2}]\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C\) |
Of \(\GL_2\)-type, simple