Properties

Label 37636.a
Conductor $37636$
Sato-Tate group $E_6$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\mathsf{CM}\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Learn more about

Genus 2 curves in isogeny class 37636.a

Label Equation
37636.a.602176.1 \(y^2 + (x^3 + x + 1)y = x^5 + 4x^4 + 6x^3 + 3x^2\)

L-function data

Analytic rank:\(2\)  (upper bound)
Mordell-Weil rank:\(2\)
 
Bad L-factors:
Prime L-Factor
\(2\)\( 1 + T + T^{2}\)
\(97\)\( 1 + 14 T + 97 T^{2}\)
 
Good L-factors:
Prime L-Factor
\(3\)\( 1 + 2 T + T^{2} + 6 T^{3} + 9 T^{4}\)
\(5\)\( 1 + 3 T + 8 T^{2} + 15 T^{3} + 25 T^{4}\)
\(7\)\( ( 1 + T + 7 T^{2} )( 1 + 5 T + 7 T^{2} )\)
\(11\)\( 1 - 11 T^{2} + 121 T^{4}\)
\(13\)\( ( 1 + 2 T + 13 T^{2} )( 1 + 7 T + 13 T^{2} )\)
\(17\)\( 1 - 3 T + 20 T^{2} - 51 T^{3} + 289 T^{4}\)
\(19\)\( ( 1 - 8 T + 19 T^{2} )( 1 + 8 T + 19 T^{2} )\)
\(23\)\( 1 + 23 T^{2} + 529 T^{4}\)
\(29\)\( 1 + 12 T + 77 T^{2} + 348 T^{3} + 841 T^{4}\)
$\cdots$$\cdots$
 
See L-function page for more information

Sato-Tate group

\(\mathrm{ST} =\) $E_6$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\)

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism algebra over \(\Q\):

\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\C\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) 6.6.8587340257.1 with defining polynomial \(x^{6} - x^{5} - 40 x^{4} - 45 x^{3} + 236 x^{2} + 230 x - 389\)

Endomorphism algebra over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.