Minimal equation
Minimal equation
Simplified equation
$y^2 = x^5 + 4x^4 - 13x^3 + 9x^2 - x$ | (homogenize, simplify) |
$y^2 = x^5z + 4x^4z^2 - 13x^3z^3 + 9x^2z^4 - xz^5$ | (dehomogenize, simplify) |
$y^2 = x^5 + 4x^4 - 13x^3 + 9x^2 - x$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(12544\) | \(=\) | \( 2^{8} \cdot 7^{2} \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(614656\) | \(=\) | \( 2^{8} \cdot 7^{4} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(398\) | \(=\) | \( 2 \cdot 199 \) |
\( I_4 \) | \(=\) | \(9016\) | \(=\) | \( 2^{3} \cdot 7^{2} \cdot 23 \) |
\( I_6 \) | \(=\) | \(912086\) | \(=\) | \( 2 \cdot 7^{2} \cdot 41 \cdot 227 \) |
\( I_{10} \) | \(=\) | \(2401\) | \(=\) | \( 7^{4} \) |
\( J_2 \) | \(=\) | \(796\) | \(=\) | \( 2^{2} \cdot 199 \) |
\( J_4 \) | \(=\) | \(2358\) | \(=\) | \( 2 \cdot 3^{2} \cdot 131 \) |
\( J_6 \) | \(=\) | \(-2348\) | \(=\) | \( - 2^{2} \cdot 587 \) |
\( J_8 \) | \(=\) | \(-1857293\) | \(=\) | \( -1857293 \) |
\( J_{10} \) | \(=\) | \(614656\) | \(=\) | \( 2^{8} \cdot 7^{4} \) |
\( g_1 \) | \(=\) | \(1248318403996/2401\) | ||
\( g_2 \) | \(=\) | \(9291226221/4802\) | ||
\( g_3 \) | \(=\) | \(-23245787/9604\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_6$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $D_6$ |
|
Rational points
Number of rational Weierstrass points: \(3\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{2}\Z \oplus \Z/{2}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((1 : 0 : 1) - (1 : 0 : 0)\) | \(x - z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((1 : 0 : 1) - (1 : 0 : 0)\) | \(x - z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((1 : 0 : 1) - (1 : 0 : 0)\) | \(x - z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
2-torsion field: \(\Q(\zeta_{7})^+\)
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(2\) |
Regulator: | \( 1 \) |
Real period: | \( 19.01761 \) |
Tamagawa product: | \( 1 \) |
Torsion order: | \( 4 \) |
Leading coefficient: | \( 1.188600 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(2\) | \(8\) | \(8\) | \(1\) | \(1^*\) | \(1\) | no | |
\(7\) | \(2\) | \(4\) | \(1\) | \(1\) | \(1 - 4 T + 7 T^{2}\) | yes |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.240.1 | yes |
\(3\) | 3.2880.16 | no |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $E_3$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over the number field \(\Q (b) \simeq \) \(\Q(\zeta_{7})^+\) with defining polynomial:
\(x^{3} - x^{2} - 2 x + 1\)
Decomposes up to isogeny as the square of the elliptic curve isogeny class:
\(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
\(g_4 = -15349824 b^{2} + 8518608 b + 34491744\)
\(g_6 = 17221522752 b^{2} - 9557224992 b - 38696416416\)
Conductor norm: 4096
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z [\frac{1 + \sqrt{-3}}{2}]\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\C\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\zeta_{7})^+\) with defining polynomial \(x^{3} - x^{2} - 2 x + 1\)
Not of \(\GL_2\)-type over \(\overline{\Q}\)
Endomorphism ring over \(\overline{\Q}\):
\(\End (J_{\overline{\Q}})\) | \(\simeq\) | an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\) |
\(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |