Genus 2 curves in isogeny class 13689.b
Label | Equation |
---|---|
13689.b.13689.1 | \(y^2 + (x^2 + x)y = x^5 + 3x^4 + x^3 - 2x^2 - x\) |
L-function data
Analytic rank: | \(0\) | ||||||||||||||||||||
Mordell-Weil rank: | \(0\) | ||||||||||||||||||||
Bad L-factors: |
| ||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||
See L-function page for more information |
Sato-Tate group
\(\mathrm{ST} =\) $E_6$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\)
Decomposition of the Jacobian
Splits over the number field \(\Q (b) \simeq \) 6.6.2436053373.1 with defining polynomial:
\(x^{6} - 39 x^{4} - 26 x^{3} + 351 x^{2} + 234 x - 468\)
Decomposes up to isogeny as the square of the elliptic curve isogeny class:
\(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
\(g_4 = \frac{934083}{163328} b^{5} + \frac{1485783}{81664} b^{4} - \frac{36412389}{163328} b^{3} - \frac{17420013}{20416} b^{2} + \frac{264047121}{163328} b + \frac{145435095}{20416}\)
\(g_6 = \frac{808340715}{653312} b^{5} + \frac{419505723}{1306624} b^{4} - \frac{15223855959}{326656} b^{3} - \frac{59082698025}{1306624} b^{2} + \frac{237407060241}{653312} b + \frac{499572811413}{1306624}\)
Conductor norm: 1
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism algebra over \(\Q\):
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\C\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) 6.6.2436053373.1 with defining polynomial \(x^{6} - 39 x^{4} - 26 x^{3} + 351 x^{2} + 234 x - 468\)
Endomorphism algebra over \(\overline{\Q}\):
\(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.