Minimal equation
Minimal equation
Simplified equation
$y^2 + (x^2 + x)y = -x^6 + 3x^5 - 6x^4 + 6x^3 - 6x^2 + 3x - 1$ | (homogenize, simplify) |
$y^2 + (x^2z + xz^2)y = -x^6 + 3x^5z - 6x^4z^2 + 6x^3z^3 - 6x^2z^4 + 3xz^5 - z^6$ | (dehomogenize, simplify) |
$y^2 = -4x^6 + 12x^5 - 23x^4 + 26x^3 - 23x^2 + 12x - 4$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(676\) | \(=\) | \( 2^{2} \cdot 13^{2} \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(-17576\) | \(=\) | \( - 2^{3} \cdot 13^{3} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(1244\) | \(=\) | \( 2^{2} \cdot 311 \) |
\( I_4 \) | \(=\) | \(1249\) | \(=\) | \( 1249 \) |
\( I_6 \) | \(=\) | \(129167\) | \(=\) | \( 37 \cdot 3491 \) |
\( I_{10} \) | \(=\) | \(2249728\) | \(=\) | \( 2^{10} \cdot 13^{3} \) |
\( J_2 \) | \(=\) | \(311\) | \(=\) | \( 311 \) |
\( J_4 \) | \(=\) | \(3978\) | \(=\) | \( 2 \cdot 3^{2} \cdot 13 \cdot 17 \) |
\( J_6 \) | \(=\) | \(72332\) | \(=\) | \( 2^{2} \cdot 13^{2} \cdot 107 \) |
\( J_8 \) | \(=\) | \(1667692\) | \(=\) | \( 2^{2} \cdot 13^{2} \cdot 2467 \) |
\( J_{10} \) | \(=\) | \(17576\) | \(=\) | \( 2^{3} \cdot 13^{3} \) |
\( g_1 \) | \(=\) | \(2909390022551/17576\) | ||
\( g_2 \) | \(=\) | \(4602275343/676\) | ||
\( g_3 \) | \(=\) | \(10349147/26\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $D_6$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $D_6$ |
|
Rational points
Number of rational Weierstrass points: \(0\)
This curve is locally solvable except over $\R$, $\Q_{2}$, and $\Q_{11}$.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{3}\Z \oplus \Z/{3}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - D_\infty\) | \(2x^2 - 2xz + z^2\) | \(=\) | \(0,\) | \(2y\) | \(=\) | \(-xz^2\) | \(0\) | \(3\) |
\(D_0 - D_\infty\) | \(x^2 - xz + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-xz^2\) | \(0\) | \(3\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - D_\infty\) | \(2x^2 - 2xz + z^2\) | \(=\) | \(0,\) | \(2y\) | \(=\) | \(-xz^2\) | \(0\) | \(3\) |
\(D_0 - D_\infty\) | \(x^2 - xz + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-xz^2\) | \(0\) | \(3\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - D_\infty\) | \(2x^2 - 2xz + z^2\) | \(=\) | \(0,\) | \(2y\) | \(=\) | \(x^2z - xz^2\) | \(0\) | \(3\) |
\(D_0 - D_\infty\) | \(x^2 - xz + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^2z - xz^2\) | \(0\) | \(3\) |
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(0\) |
Regulator: | \( 1 \) |
Real period: | \( 7.177120 \) |
Tamagawa product: | \( 3 \) |
Torsion order: | \( 9 \) |
Leading coefficient: | \( 0.265819 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(2\) | \(2\) | \(3\) | \(1\) | \(1^*\) | \(( 1 + T )^{2}\) | yes | |
\(13\) | \(2\) | \(3\) | \(3\) | \(1\) | \(( 1 - T )^{2}\) | yes |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.120.4 | no |
\(3\) | 3.17280.1 | yes |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $E_1$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the square of the elliptic curve isogeny class:
Elliptic curve isogeny class 26.a
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | an Eichler order of index \(3\) in a maximal order of \(\End (J_{}) \otimes \Q\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).