Properties

Label 26.2.a.a
Level 26
Weight 2
Character orbit 26.a
Self dual yes
Analytic conductor 0.208
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 26 = 2 \cdot 13 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 26.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(0.207611045255\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} - 3q^{5} - q^{6} - q^{7} - q^{8} - 2q^{9} + O(q^{10}) \) \( q - q^{2} + q^{3} + q^{4} - 3q^{5} - q^{6} - q^{7} - q^{8} - 2q^{9} + 3q^{10} + 6q^{11} + q^{12} + q^{13} + q^{14} - 3q^{15} + q^{16} - 3q^{17} + 2q^{18} + 2q^{19} - 3q^{20} - q^{21} - 6q^{22} - q^{24} + 4q^{25} - q^{26} - 5q^{27} - q^{28} + 6q^{29} + 3q^{30} - 4q^{31} - q^{32} + 6q^{33} + 3q^{34} + 3q^{35} - 2q^{36} - 7q^{37} - 2q^{38} + q^{39} + 3q^{40} + q^{42} - q^{43} + 6q^{44} + 6q^{45} + 3q^{47} + q^{48} - 6q^{49} - 4q^{50} - 3q^{51} + q^{52} + 5q^{54} - 18q^{55} + q^{56} + 2q^{57} - 6q^{58} - 6q^{59} - 3q^{60} + 8q^{61} + 4q^{62} + 2q^{63} + q^{64} - 3q^{65} - 6q^{66} + 14q^{67} - 3q^{68} - 3q^{70} - 3q^{71} + 2q^{72} + 2q^{73} + 7q^{74} + 4q^{75} + 2q^{76} - 6q^{77} - q^{78} + 8q^{79} - 3q^{80} + q^{81} + 12q^{83} - q^{84} + 9q^{85} + q^{86} + 6q^{87} - 6q^{88} - 6q^{89} - 6q^{90} - q^{91} - 4q^{93} - 3q^{94} - 6q^{95} - q^{96} - 10q^{97} + 6q^{98} - 12q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 1.00000 −3.00000 −1.00000 −1.00000 −1.00000 −2.00000 3.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 26.2.a.a 1
3.b odd 2 1 234.2.a.e 1
4.b odd 2 1 208.2.a.a 1
5.b even 2 1 650.2.a.j 1
5.c odd 4 2 650.2.b.d 2
7.b odd 2 1 1274.2.a.d 1
7.c even 3 2 1274.2.f.p 2
7.d odd 6 2 1274.2.f.r 2
8.b even 2 1 832.2.a.d 1
8.d odd 2 1 832.2.a.i 1
9.c even 3 2 2106.2.e.ba 2
9.d odd 6 2 2106.2.e.b 2
11.b odd 2 1 3146.2.a.n 1
12.b even 2 1 1872.2.a.q 1
13.b even 2 1 338.2.a.f 1
13.c even 3 2 338.2.c.d 2
13.d odd 4 2 338.2.b.c 2
13.e even 6 2 338.2.c.a 2
13.f odd 12 4 338.2.e.a 4
15.d odd 2 1 5850.2.a.p 1
15.e even 4 2 5850.2.e.a 2
16.e even 4 2 3328.2.b.m 2
16.f odd 4 2 3328.2.b.j 2
17.b even 2 1 7514.2.a.c 1
19.b odd 2 1 9386.2.a.j 1
20.d odd 2 1 5200.2.a.x 1
24.f even 2 1 7488.2.a.h 1
24.h odd 2 1 7488.2.a.g 1
39.d odd 2 1 3042.2.a.a 1
39.f even 4 2 3042.2.b.a 2
52.b odd 2 1 2704.2.a.f 1
52.f even 4 2 2704.2.f.d 2
65.d even 2 1 8450.2.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.2.a.a 1 1.a even 1 1 trivial
208.2.a.a 1 4.b odd 2 1
234.2.a.e 1 3.b odd 2 1
338.2.a.f 1 13.b even 2 1
338.2.b.c 2 13.d odd 4 2
338.2.c.a 2 13.e even 6 2
338.2.c.d 2 13.c even 3 2
338.2.e.a 4 13.f odd 12 4
650.2.a.j 1 5.b even 2 1
650.2.b.d 2 5.c odd 4 2
832.2.a.d 1 8.b even 2 1
832.2.a.i 1 8.d odd 2 1
1274.2.a.d 1 7.b odd 2 1
1274.2.f.p 2 7.c even 3 2
1274.2.f.r 2 7.d odd 6 2
1872.2.a.q 1 12.b even 2 1
2106.2.e.b 2 9.d odd 6 2
2106.2.e.ba 2 9.c even 3 2
2704.2.a.f 1 52.b odd 2 1
2704.2.f.d 2 52.f even 4 2
3042.2.a.a 1 39.d odd 2 1
3042.2.b.a 2 39.f even 4 2
3146.2.a.n 1 11.b odd 2 1
3328.2.b.j 2 16.f odd 4 2
3328.2.b.m 2 16.e even 4 2
5200.2.a.x 1 20.d odd 2 1
5850.2.a.p 1 15.d odd 2 1
5850.2.e.a 2 15.e even 4 2
7488.2.a.g 1 24.h odd 2 1
7488.2.a.h 1 24.f even 2 1
7514.2.a.c 1 17.b even 2 1
8450.2.a.c 1 65.d even 2 1
9386.2.a.j 1 19.b odd 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(13\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(26))\).