Learn more

Refine search


Results (3 matches)

  Download to        
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
676.a.5408.1 676.a \( 2^{2} \cdot 13^{2} \) $0$ $\Z/21\Z$ \(\Q \times \Q\) $[204,3273,161211,692224]$ $[51,-28,0,-196,5408]$ $[345025251/5408,-928557/1352,0]$ $y^2 + (x^3 + x^2 + x)y = x^3 + 3x^2 + 3x + 1$
676.a.562432.1 676.a \( 2^{2} \cdot 13^{2} \) $0$ $\Z/21\Z$ \(\Q \times \Q\) $[1620,52953,29527389,71991296]$ $[405,4628,-8112,-6175936,562432]$ $[10896201253125/562432,5912281125/10816,-492075/208]$ $y^2 + (x^3 + 1)y = 2x^5 + 2x^4 + 4x^3 + 2x^2 + 2x$
676.b.17576.1 676.b \( 2^{2} \cdot 13^{2} \) $0$ $\Z/3\Z\oplus\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[1244,1249,129167,2249728]$ $[311,3978,72332,1667692,17576]$ $[2909390022551/17576,4602275343/676,10349147/26]$ $y^2 + (x^2 + x)y = -x^6 + 3x^5 - 6x^4 + 6x^3 - 6x^2 + 3x - 1$
  Download to