Properties

Label 11881.a.11881.1
Conductor $11881$
Discriminant $11881$
Mordell-Weil group \(\Z/{2}\Z \times \Z/{2}\Z\)
Sato-Tate group $E_6$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\mathsf{CM}\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Learn more about

Show commands for: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x)y = x^5 - 3x^4 + 2x^2 - x$ (homogenize, simplify)
$y^2 + (x^2z + xz^2)y = x^5z - 3x^4z^2 + 2x^2z^4 - xz^5$ (dehomogenize, simplify)
$y^2 = 4x^5 - 11x^4 + 2x^3 + 9x^2 - 4x$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 2, 0, -3, 1]), R([0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 2, 0, -3, 1], R![0, 1, 1]);
 
sage: X = HyperellipticCurve(R([0, -4, 9, 2, -11, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(11881\) \(=\) \( 109^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(11881\) \(=\) \( 109^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(484\) \(=\)  \( 2^{2} \cdot 11^{2} \)
\( I_4 \)  \(=\) \(6649\) \(=\)  \( 61 \cdot 109 \)
\( I_6 \)  \(=\) \(988957\) \(=\)  \( 43 \cdot 109 \cdot 211 \)
\( I_{10} \)  \(=\) \(1520768\) \(=\)  \( 2^{7} \cdot 109^{2} \)
\( J_2 \)  \(=\) \(121\) \(=\)  \( 11^{2} \)
\( J_4 \)  \(=\) \(333\) \(=\)  \( 3^{2} \cdot 37 \)
\( J_6 \)  \(=\) \(-323\) \(=\)  \( - 17 \cdot 19 \)
\( J_8 \)  \(=\) \(-37493\) \(=\)  \( -37493 \)
\( J_{10} \)  \(=\) \(11881\) \(=\)  \( 109^{2} \)
\( g_1 \)  \(=\) \(25937424601/11881\)
\( g_2 \)  \(=\) \(589929813/11881\)
\( g_3 \)  \(=\) \(-4729043/11881\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_6$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $D_6$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (1 : -1 : 1)\)

magma: [C![0,0,1],C![1,-1,1],C![1,0,0]];
 

Number of rational Weierstrass points: \(3\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \times \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : 0 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) \((-x + z) x\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2\) \(0\) \(2\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)

2-torsion field: 3.3.11881.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(2\)
Regulator: \( 1 \)
Real period: \( 19.58581 \)
Tamagawa product: \( 1 \)
Torsion order:\( 4 \)
Leading coefficient: \( 1.224113 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(109\) \(2\) \(2\) \(1\) \(1 + 2 T + 109 T^{2}\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $E_6$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b) \simeq \) 6.6.15386239549.1 with defining polynomial:
  \(x^{6} - x^{5} - 45 x^{4} + 10 x^{3} + 135 x^{2} - 9 x - 27\)

Decomposes up to isogeny as the square of the elliptic curve:
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = \frac{147701}{4096} b^{5} - \frac{15029}{512} b^{4} - \frac{6746953}{4096} b^{3} + \frac{127233}{4096} b^{2} + \frac{5832603}{1024} b + \frac{9927711}{4096}\)
  \(g_6 = -\frac{15293245}{4096} b^{5} + \frac{19556889}{16384} b^{4} + \frac{2753146089}{16384} b^{3} + \frac{155622897}{2048} b^{2} - \frac{6855921567}{16384} b - \frac{2976635547}{16384}\)
   Conductor norm: 1

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\C\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) 6.6.15386239549.1 with defining polynomial \(x^{6} - x^{5} - 45 x^{4} + 10 x^{3} + 135 x^{2} - 9 x - 27\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

Remainder of the endomorphism lattice by field

Over subfield \(F \simeq \) \(\Q(\sqrt{109}) \) with generator \(\frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{11}{2} a^{3} + \frac{9}{8} a^{2} + \frac{99}{8} a\) with minimal polynomial \(x^{2} - x - 27\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_3$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 3.3.11881.1 with generator \(-\frac{1}{9} a^{5} + \frac{1}{9} a^{4} + 5 a^{3} - \frac{10}{9} a^{2} - 14 a + 1\) with minimal polynomial \(x^{3} - x^{2} - 36 x + 4\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_2$
  Of \(\GL_2\)-type, simple