Properties

Label 2187.a.6561.1
Conductor $2187$
Discriminant $6561$
Mordell-Weil group \(\Z/{6}\Z\)
Sato-Tate group $J(E_3)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = -1$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = -z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 2x^3 - 3$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([-3, 0, 0, 2, 0, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(2187\) \(=\) \( 3^{7} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(6561\) \(=\) \( 3^{8} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(124\) \(=\)  \( 2^{2} \cdot 31 \)
\( I_4 \)  \(=\) \(297\) \(=\)  \( 3^{3} \cdot 11 \)
\( I_6 \)  \(=\) \(13275\) \(=\)  \( 3^{2} \cdot 5^{2} \cdot 59 \)
\( I_{10} \)  \(=\) \(3456\) \(=\)  \( 2^{7} \cdot 3^{3} \)
\( J_2 \)  \(=\) \(93\) \(=\)  \( 3 \cdot 31 \)
\( J_4 \)  \(=\) \(249\) \(=\)  \( 3 \cdot 83 \)
\( J_6 \)  \(=\) \(-239\) \(=\)  \( -239 \)
\( J_8 \)  \(=\) \(-21057\) \(=\)  \( - 3 \cdot 7019 \)
\( J_{10} \)  \(=\) \(6561\) \(=\)  \( 3^{8} \)
\( g_1 \)  \(=\) \(28629151/27\)
\( g_2 \)  \(=\) \(2472653/81\)
\( g_3 \)  \(=\) \(-229679/729\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $D_6$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (1 : -1 : 1)\)
All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (1 : -1 : 1)\)
All points: \((1 : -1 : 0),\, (1 : 1 : 0),\, (1 : 0 : 1)\)

magma: [C![1,-1,0],C![1,-1,1],C![1,0,0]]; // minimal model
 
magma: [C![1,-1,0],C![1,0,1],C![1,1,0]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{6}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((1 : -1 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0\) \(6\)
Generator $D_0$ Height Order
\((1 : -1 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0\) \(6\)
Generator $D_0$ Height Order
\((1 : 0 : 1) - (1 : 1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + z^3\) \(0\) \(6\)

2-torsion field: 3.1.243.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(1\)
Regulator: \( 1 \)
Real period: \( 10.92567 \)
Tamagawa product: \( 2 \)
Torsion order:\( 6 \)
Leading coefficient: \( 0.606982 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(7\) \(8\) \(2\) \(1\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.120.1 yes
\(3\) 3.5760.5 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $J(E_3)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b) \simeq \) 6.0.177147.2 with defining polynomial:
  \(x^{6} + 3\)

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = -\frac{891}{32} b^{5} + \frac{2187}{32} b^{2}\)
  \(g_6 = \frac{15309}{32} b^{3} + \frac{67797}{64}\)
   Conductor norm: 9

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) 6.0.177147.2 with defining polynomial \(x^{6} + 3\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

Remainder of the endomorphism lattice by field

Over subfield \(F \simeq \) \(\Q(\sqrt{-3}) \) with generator \(-\frac{1}{2} a^{3} + \frac{1}{2}\) with minimal polynomial \(x^{2} - x + 1\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_3$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 3.1.243.1 with generator \(\frac{1}{2} a^{5} + \frac{1}{2} a^{2}\) with minimal polynomial \(x^{3} - 3\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\sqrt{3}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 3.1.243.1 with generator \(-\frac{1}{2} a^{5} + \frac{1}{2} a^{2}\) with minimal polynomial \(x^{3} - 3\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\sqrt{3}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 3.1.243.1 with generator \(-a^{2}\) with minimal polynomial \(x^{3} - 3\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\sqrt{3}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, simple

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);