Minimal equation
Minimal equation
Simplified equation
$y^2 + (x^3 + 1)y = 2$ | (homogenize, simplify) |
$y^2 + (x^3 + z^3)y = 2z^6$ | (dehomogenize, simplify) |
$y^2 = x^6 + 2x^3 + 9$ | (minimize, homogenize) |
Invariants
Conductor: | \( N \) | \(=\) | \(26244\) | \(=\) | \( 2^{2} \cdot 3^{8} \) | magma: Conductor(LSeries(C)); Factorization($1);
|
Discriminant: | \( \Delta \) | \(=\) | \(-472392\) | \(=\) | \( - 2^{3} \cdot 3^{10} \) | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(356\) | \(=\) | \( 2^{2} \cdot 89 \) |
\( I_4 \) | \(=\) | \(3969\) | \(=\) | \( 3^{4} \cdot 7^{2} \) |
\( I_6 \) | \(=\) | \(419553\) | \(=\) | \( 3^{3} \cdot 41 \cdot 379 \) |
\( I_{10} \) | \(=\) | \(248832\) | \(=\) | \( 2^{10} \cdot 3^{5} \) |
\( J_2 \) | \(=\) | \(267\) | \(=\) | \( 3 \cdot 89 \) |
\( J_4 \) | \(=\) | \(1482\) | \(=\) | \( 2 \cdot 3 \cdot 13 \cdot 19 \) |
\( J_6 \) | \(=\) | \(-2884\) | \(=\) | \( - 2^{2} \cdot 7 \cdot 103 \) |
\( J_8 \) | \(=\) | \(-741588\) | \(=\) | \( - 2^{2} \cdot 3 \cdot 29 \cdot 2131 \) |
\( J_{10} \) | \(=\) | \(472392\) | \(=\) | \( 2^{3} \cdot 3^{10} \) |
\( g_1 \) | \(=\) | \(5584059449/1944\) | ||
\( g_2 \) | \(=\) | \(174127343/2916\) | ||
\( g_3 \) | \(=\) | \(-5711041/13122\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ | magma: AutomorphismGroup(C); IdentifyGroup($1);
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $D_6$ | magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
Rational points
All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (0 : 1 : 1),\, (0 : -2 : 1)\)
Number of rational Weierstrass points: \(0\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{3}\Z \times \Z/{3}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((0 : 1 : 1) - (1 : -1 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(z^3\) | \(0\) | \(3\) |
\(D_0 - 2 \cdot(1 : 0 : 0)\) | \(z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-x^3\) | \(0\) | \(3\) |
2-torsion field: 6.0.3359232.3
BSD invariants
Hasse-Weil conjecture: | unverified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(0\) |
Regulator: | \( 1 \) |
Real period: | \( 12.04808 \) |
Tamagawa product: | \( 9 \) |
Torsion order: | \( 9 \) |
Leading coefficient: | \( 1.338675 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | L-factor | Cluster picture |
---|---|---|---|---|---|
\(2\) | \(2\) | \(3\) | \(3\) | \(( 1 - T )( 1 + T )\) | |
\(3\) | \(8\) | \(10\) | \(3\) | \(1\) |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $J(E_3)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over the number field \(\Q (b) \simeq \) 3.1.243.1 with defining polynomial:
\(x^{3} - 3\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curves:
\(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
\(g_4 = 297 b^{2}\)
\(g_6 = -14337\)
Conductor norm: 216
\(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
\(g_4 = 513 b^{2}\)
\(g_6 = -34749\)
Conductor norm: 216
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) 6.0.177147.2 with defining polynomial \(x^{6} + 3\)
Not of \(\GL_2\)-type over \(\overline{\Q}\)
Endomorphism ring over \(\overline{\Q}\):
\(\End (J_{\overline{\Q}})\) | \(\simeq\) | an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\) |
\(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
Remainder of the endomorphism lattice by field
Over subfield \(F \simeq \) \(\Q(\sqrt{-3}) \) with generator \(-\frac{1}{2} a^{3} + \frac{1}{2}\) with minimal polynomial \(x^{2} - x + 1\):
\(\End (J_{F})\) | \(\simeq\) | \(\Z [\frac{1 + \sqrt{-3}}{2}]\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C\) |
Of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) 3.1.243.1 with generator \(\frac{1}{2} a^{5} + \frac{1}{2} a^{2}\) with minimal polynomial \(x^{3} - 3\):
\(\End (J_{F})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) 3.1.243.1 with generator \(-\frac{1}{2} a^{5} + \frac{1}{2} a^{2}\) with minimal polynomial \(x^{3} - 3\):
\(\End (J_{F})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) 3.1.243.1 with generator \(-a^{2}\) with minimal polynomial \(x^{3} - 3\):
\(\End (J_{F})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, not simple