Properties

Label 17689.a.17689.1
Conductor $17689$
Discriminant $17689$
Mordell-Weil group \(\Z/{2}\Z \times \Z/{2}\Z\)
Sato-Tate group $E_6$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\mathsf{CM}\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Learn more about

Show commands for: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x)y = x^5 - 4x^4 + 2x^3 + x^2 - x$ (homogenize, simplify)
$y^2 + (x^2z + xz^2)y = x^5z - 4x^4z^2 + 2x^3z^3 + x^2z^4 - xz^5$ (dehomogenize, simplify)
$y^2 = 4x^5 - 15x^4 + 10x^3 + 5x^2 - 4x$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 1, 2, -4, 1]), R([0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 1, 2, -4, 1], R![0, 1, 1]);
 
sage: X = HyperellipticCurve(R([0, -4, 5, 10, -15, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(17689\) \(=\) \( 7^{2} \cdot 19^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(17689\) \(=\) \( 7^{2} \cdot 19^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(580\) \(=\)  \( 2^{2} \cdot 5 \cdot 29 \)
\( I_4 \)  \(=\) \(11305\) \(=\)  \( 5 \cdot 7 \cdot 17 \cdot 19 \)
\( I_6 \)  \(=\) \(1902565\) \(=\)  \( 5 \cdot 7 \cdot 19 \cdot 2861 \)
\( I_{10} \)  \(=\) \(2264192\) \(=\)  \( 2^{7} \cdot 7^{2} \cdot 19^{2} \)
\( J_2 \)  \(=\) \(145\) \(=\)  \( 5 \cdot 29 \)
\( J_4 \)  \(=\) \(405\) \(=\)  \( 3^{4} \cdot 5 \)
\( J_6 \)  \(=\) \(-395\) \(=\)  \( - 5 \cdot 79 \)
\( J_8 \)  \(=\) \(-55325\) \(=\)  \( - 5^{2} \cdot 2213 \)
\( J_{10} \)  \(=\) \(17689\) \(=\)  \( 7^{2} \cdot 19^{2} \)
\( g_1 \)  \(=\) \(64097340625/17689\)
\( g_2 \)  \(=\) \(1234693125/17689\)
\( g_3 \)  \(=\) \(-8304875/17689\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_6$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $D_6$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (1 : -1 : 1)\)

magma: [C![0,0,1],C![1,-1,1],C![1,0,0]];
 

Number of rational Weierstrass points: \(3\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \times \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : 0 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) \((-x + z) x\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2\) \(0\) \(2\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)

2-torsion field: 3.3.17689.2

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(2\)
Regulator: \( 1 \)
Real period: \( 15.83341 \)
Tamagawa product: \( 1 \)
Torsion order:\( 4 \)
Leading coefficient: \( 0.989588 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(7\) \(2\) \(2\) \(1\) \(1 + 4 T + 7 T^{2}\)
\(19\) \(2\) \(2\) \(1\) \(1 - 8 T + 19 T^{2}\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $E_6$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b) \simeq \) 6.6.41615795893.1 with defining polynomial:
  \(x^{6} - x^{5} - 55 x^{4} + 160 x^{3} - 20 x^{2} - 176 x + 64\)

Decomposes up to isogeny as the square of the elliptic curve:
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = -\frac{69985}{4096} b^{5} - \frac{215105}{4096} b^{4} + \frac{3277445}{4096} b^{3} + \frac{1507805}{2048} b^{2} - \frac{95405}{512} b - \frac{5395}{128}\)
  \(g_6 = \frac{43806875}{8192} b^{5} + \frac{107256121}{16384} b^{4} - \frac{4559080001}{16384} b^{3} + \frac{3937414859}{16384} b^{2} + \frac{1500725849}{4096} b - \frac{169119475}{1024}\)
   Conductor norm: 1

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\C\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) 6.6.41615795893.1 with defining polynomial \(x^{6} - x^{5} - 55 x^{4} + 160 x^{3} - 20 x^{2} - 176 x + 64\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

Remainder of the endomorphism lattice by field

Over subfield \(F \simeq \) \(\Q(\sqrt{133}) \) with generator \(\frac{1}{8} a^{5} - \frac{27}{4} a^{3} + \frac{107}{8} a^{2} + \frac{21}{4} a - 9\) with minimal polynomial \(x^{2} - x - 33\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_3$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 3.3.17689.2 with generator \(-\frac{1}{9} a^{5} + \frac{55}{9} a^{3} - \frac{35}{3} a^{2} - \frac{76}{9} a + \frac{100}{9}\) with minimal polynomial \(x^{3} - x^{2} - 44 x + 64\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_2$
  Of \(\GL_2\)-type, simple