This is a model for the modular curve $X_1(13)$. The integer $13$ is the smallest $N \in \mathbb{N}$ such that $X_1(N)$ has genus $2$.
Minimal equation
$y^2 + (x^3 + x + 1)y = x^5 + x^4$
Invariants
| \( N \) | = | \( 169 \) | = | \( 13^{2} \) | magma: Conductor(LSeries(C)); Factorization($1);
|
| \( \Delta \) | = | \(-169\) | = | \( -1 \cdot 13^{2} \) | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | = | \(8\) | = | \( 2^{3} \) |
| \( I_4 \) | = | \(3172\) | = | \( 2^{2} \cdot 13 \cdot 61 \) |
| \( I_6 \) | = | \(30056\) | = | \( 2^{3} \cdot 13 \cdot 17^{2} \) |
| \( I_{10} \) | = | \(-692224\) | = | \( -1 \cdot 2^{12} \cdot 13^{2} \) |
| \( J_2 \) | = | \(1\) | = | \( 1 \) |
| \( J_4 \) | = | \(-33\) | = | \( -1 \cdot 3 \cdot 11 \) |
| \( J_6 \) | = | \(-43\) | = | \( -1 \cdot 43 \) |
| \( J_8 \) | = | \(-283\) | = | \( -1 \cdot 283 \) |
| \( J_{10} \) | = | \(-169\) | = | \( -1 \cdot 13^{2} \) |
| \( g_1 \) | = | \(-1/169\) | ||
| \( g_2 \) | = | \(33/169\) | ||
| \( g_3 \) | = | \(43/169\) |
Automorphism group
|
magma: AutomorphismGroup(C); IdentifyGroup($1);
|
||||
| \(\mathrm{Aut}(X)\) | \(\simeq\) | \(C_6 \) | (GAP id : [6,2]) | |
|
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
||||
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | \(D_6 \) | (GAP id : [12,4]) | |
Rational points
This curve is locally solvable everywhere.
All rational points: (-1 : 0 : 1), (-1 : 1 : 1), (0 : -1 : 1), (0 : 0 : 1), (1 : -1 : 0), (1 : 0 : 0)
Number of rational Weierstrass points: \(0\)
Invariants of the Jacobian:
Analytic rank: \(0\)
2-Selmer rank: \(0\)
Order of Ш*: square
Regulator: 1.0
Real period: 32.667031090507096110005902370
Tamagawa numbers: 1 (p = 13)
Torsion: \(\Z/{19}\Z\)
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $E_6$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\) |
Decomposition
Splits over the number field \(\Q (b) \simeq \) \(\Q(\zeta_{13})^+\) with defining polynomial:
\(x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 3 x - 1\)
Decomposes up to isogeny as the square of the elliptic curve:
\(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
\(g_4 = 3630 b^{5} + 1720 b^{4} - 15597 b^{3} - 8353 b^{2} + 9457 b + 2644\)
\(g_6 = 316316 b^{5} + 160160 b^{4} - 1342341 b^{3} - 759759 b^{2} + 759759 b + 207207\)
Conductor norm: 1
Endomorphisms
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):| \(\End (J_{})\) | \(\simeq\) | \(\Z [\frac{1 + \sqrt{-3}}{2}]\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\C\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\zeta_{13})^+\) with defining polynomial \(x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 3 x - 1\)
Not of \(\GL_2\)-type over \(\overline{\Q}\)
Endomorphism ring over \(\overline{\Q}\):| \(\End (J_{\overline{\Q}})\) | \(\simeq\) | an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\) |
| \(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
| \(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
Remainder of the endomorphism lattice by field
Over subfield \(F \simeq \) \(\Q(\sqrt{13}) \) with generator \(-a^{4} + a^{3} + 4 a^{2} - 2 a - 2\) with minimal polynomial \(x^{2} - x - 3\):| \(\End (J_{F})\) | \(\simeq\) | \(\Z [\frac{1 + \sqrt{-3}}{2}]\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C\) |
of \(\GL_2\)-type, simpleOver subfield \(F \simeq \) 3.3.169.1 with generator \(a^{3} - a^{2} - 3 a + 2\) with minimal polynomial \(x^{3} - x^{2} - 4 x - 1\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z [\frac{1 + \sqrt{-3}}{2}]\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C\) |
of \(\GL_2\)-type, simple
Additional information
Mazur and Tate (Invent. Math. 22 (1973), 41-49) attribute the discovery of $19$-torsion point on the Jacobian of $X_1(13)$ to Ogg, and use it to prove that this point generates the full Mordell-Weil group using a 19-descent(!). It follows that there are no rational points other than the three pairs above $x=0,-1,\infty$; since these points are cusps of $X_1(13)$, Mazur and Tate thus prove that there is no elliptic curve $E/\Q$ with a rational torsion point of order $13$.