Normalized defining polynomial
\( x^{16} + 8 x^{14} - 48 x^{11} - 16 x^{10} - 192 x^{9} + 340 x^{8} - 96 x^{7} + 912 x^{6} - 192 x^{5} + \cdots + 108 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(4357047163233901253492736\)
\(\medspace = 2^{66}\cdot 3^{10}\)
|
| |
Root discriminant: | \(34.67\) |
| |
Galois root discriminant: | $2^{555/128}3^{3/4}\approx 46.035004279893066$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-2}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{4}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{12}a^{10}-\frac{1}{12}a^{9}+\frac{1}{6}a^{8}+\frac{1}{6}a^{7}+\frac{1}{6}a^{6}+\frac{1}{6}a^{5}+\frac{1}{3}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{12}a^{11}+\frac{1}{12}a^{9}-\frac{1}{6}a^{8}+\frac{1}{3}a^{7}+\frac{1}{3}a^{6}-\frac{1}{2}a^{5}+\frac{1}{3}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{36}a^{12}-\frac{1}{36}a^{11}-\frac{1}{36}a^{10}-\frac{1}{36}a^{9}-\frac{1}{9}a^{8}-\frac{1}{9}a^{7}-\frac{7}{18}a^{6}-\frac{1}{2}a^{5}+\frac{1}{6}a^{4}-\frac{1}{6}a^{3}-\frac{1}{6}a^{2}-\frac{1}{2}a$, $\frac{1}{36}a^{13}+\frac{1}{36}a^{11}+\frac{1}{36}a^{10}+\frac{1}{9}a^{9}-\frac{2}{9}a^{8}-\frac{1}{2}a^{7}-\frac{7}{18}a^{6}-\frac{1}{6}a^{5}-\frac{1}{3}a^{4}+\frac{1}{6}a^{3}-\frac{1}{6}a^{2}$, $\frac{1}{108}a^{14}-\frac{1}{108}a^{12}+\frac{1}{36}a^{10}+\frac{1}{9}a^{9}+\frac{13}{54}a^{8}+\frac{4}{9}a^{7}+\frac{10}{27}a^{6}+\frac{1}{18}a^{4}-\frac{1}{9}a^{3}+\frac{5}{18}a^{2}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{10\cdots 52}a^{15}-\frac{161215970833}{335599698656484}a^{14}+\frac{12348173280797}{10\cdots 52}a^{13}+\frac{3930435903293}{335599698656484}a^{12}-\frac{59201096543}{27966641554707}a^{11}+\frac{142521241926}{9322213851569}a^{10}-\frac{53710121629919}{503399547984726}a^{9}-\frac{16250357805769}{167799849328242}a^{8}+\frac{81403546311689}{503399547984726}a^{7}-\frac{15026081307263}{55933283109414}a^{6}+\frac{14747109927895}{167799849328242}a^{5}+\frac{79619984341627}{167799849328242}a^{4}+\frac{14458760321764}{83899924664121}a^{3}+\frac{13874381282651}{27966641554707}a^{2}-\frac{13292696890648}{27966641554707}a+\frac{4222617877035}{9322213851569}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $3$ |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{1898440263709}{503399547984726}a^{15}+\frac{4340444448521}{10\cdots 52}a^{14}+\frac{16785404308205}{503399547984726}a^{13}+\frac{19771343418269}{503399547984726}a^{12}+\frac{4222690784801}{167799849328242}a^{11}-\frac{4302121120579}{27966641554707}a^{10}-\frac{67465775844005}{251699773992363}a^{9}-\frac{254172532245986}{251699773992363}a^{8}+\frac{42642688606718}{251699773992363}a^{7}+\frac{281551319735791}{503399547984726}a^{6}+\frac{309106602763285}{83899924664121}a^{5}+\frac{372176375357168}{83899924664121}a^{4}+\frac{48741019787261}{9322213851569}a^{3}+\frac{246524313995261}{83899924664121}a^{2}+\frac{35465281178576}{27966641554707}a+\frac{6568717369687}{27966641554707}$, $\frac{4644199783453}{10\cdots 52}a^{15}+\frac{1170383457983}{111866566218828}a^{14}+\frac{7406572356254}{251699773992363}a^{13}+\frac{20777727035389}{335599698656484}a^{12}-\frac{10821653726891}{335599698656484}a^{11}-\frac{31022513798795}{83899924664121}a^{10}-\frac{213836125319993}{503399547984726}a^{9}-\frac{83560130820055}{167799849328242}a^{8}+\frac{75800683178065}{251699773992363}a^{7}+\frac{574285615566067}{167799849328242}a^{6}+\frac{333185835464336}{83899924664121}a^{5}-\frac{119735671541897}{167799849328242}a^{4}+\frac{101330045538437}{167799849328242}a^{3}+\frac{32525270320321}{27966641554707}a^{2}+\frac{87961382815736}{27966641554707}a-\frac{8439159197481}{9322213851569}$, $\frac{1940587358065}{10\cdots 52}a^{15}-\frac{971936599583}{503399547984726}a^{14}+\frac{8400268126405}{503399547984726}a^{13}-\frac{14662694620337}{10\cdots 52}a^{12}+\frac{3043731831793}{335599698656484}a^{11}-\frac{2405232626252}{27966641554707}a^{10}+\frac{13384042265018}{251699773992363}a^{9}-\frac{100143954266000}{251699773992363}a^{8}+\frac{240817979538157}{251699773992363}a^{7}-\frac{266717119914337}{251699773992363}a^{6}+\frac{190331644145786}{83899924664121}a^{5}-\frac{98491240930375}{55933283109414}a^{4}+\frac{390903958809637}{167799849328242}a^{3}-\frac{100969201950520}{83899924664121}a^{2}+\frac{13699453327663}{9322213851569}a-\frac{28951178272574}{27966641554707}$, $\frac{20017237767637}{10\cdots 52}a^{15}-\frac{7569524985739}{10\cdots 52}a^{14}-\frac{75860648626123}{503399547984726}a^{13}-\frac{54534983575547}{10\cdots 52}a^{12}+\frac{2430501410723}{37288855406276}a^{11}+\frac{169782463803307}{167799849328242}a^{10}+\frac{171560674418221}{251699773992363}a^{9}+\frac{18\cdots 39}{503399547984726}a^{8}-\frac{14\cdots 09}{251699773992363}a^{7}-\frac{12\cdots 15}{503399547984726}a^{6}-\frac{13\cdots 03}{83899924664121}a^{5}-\frac{352175860211603}{167799849328242}a^{4}-\frac{293979299080657}{55933283109414}a^{3}+\frac{525928502825066}{83899924664121}a^{2}+\frac{11986786932047}{27966641554707}a+\frac{40125281425717}{27966641554707}$, $\frac{2531488439666}{251699773992363}a^{15}+\frac{621297110523}{37288855406276}a^{14}+\frac{85238183915713}{10\cdots 52}a^{13}+\frac{42363901251523}{335599698656484}a^{12}+\frac{7762790415925}{335599698656484}a^{11}-\frac{92123329209643}{167799849328242}a^{10}-\frac{526709137259017}{503399547984726}a^{9}-\frac{205893123176174}{83899924664121}a^{8}+\frac{250822718464447}{503399547984726}a^{7}+\frac{780159892826117}{167799849328242}a^{6}+\frac{18\cdots 59}{167799849328242}a^{5}+\frac{21\cdots 17}{167799849328242}a^{4}+\frac{807387489055855}{167799849328242}a^{3}-\frac{54231294533626}{27966641554707}a^{2}-\frac{166894461330599}{27966641554707}a+\frac{260674834756}{9322213851569}$, $\frac{2293674624773}{503399547984726}a^{15}-\frac{340607067245}{335599698656484}a^{14}+\frac{8225473972556}{251699773992363}a^{13}-\frac{111789509777}{27966641554707}a^{12}-\frac{5052687785369}{167799849328242}a^{11}-\frac{31726100295083}{167799849328242}a^{10}-\frac{11765828590049}{503399547984726}a^{9}-\frac{59090927194460}{83899924664121}a^{8}+\frac{401908122470254}{251699773992363}a^{7}-\frac{26462367482659}{167799849328242}a^{6}+\frac{187885721816291}{83899924664121}a^{5}-\frac{24026625547183}{83899924664121}a^{4}-\frac{7859553030029}{83899924664121}a^{3}+\frac{13117842501758}{9322213851569}a^{2}+\frac{2024316019619}{27966641554707}a+\frac{2958447187375}{9322213851569}$, $\frac{5716029600415}{503399547984726}a^{15}+\frac{1502789537299}{335599698656484}a^{14}-\frac{23401443108472}{251699773992363}a^{13}+\frac{1129465486706}{27966641554707}a^{12}-\frac{1587336375953}{167799849328242}a^{11}+\frac{95940933198457}{167799849328242}a^{10}+\frac{10085483592799}{503399547984726}a^{9}+\frac{180620482698481}{83899924664121}a^{8}-\frac{12\cdots 98}{251699773992363}a^{7}+\frac{449399993929205}{167799849328242}a^{6}-\frac{10\cdots 09}{83899924664121}a^{5}+\frac{553602265605239}{83899924664121}a^{4}-\frac{544381703502077}{83899924664121}a^{3}+\frac{73537196078170}{9322213851569}a^{2}-\frac{180129246883165}{27966641554707}a+\frac{28758995714823}{9322213851569}$
|
| |
Regulator: | \( 3476026.2329509286 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 3476026.2329509286 \cdot 2}{2\cdot\sqrt{4357047163233901253492736}}\cr\approx \mathstrut & 4.04506832533288 \end{aligned}\] (assuming GRH)
Galois group
$C_2^6:D_4$ (as 16T969):
A solvable group of order 512 |
The 44 conjugacy class representatives for $C_2^6:D_4$ |
Character table for $C_2^6:D_4$ |
Intermediate fields
\(\Q(\sqrt{-2}) \), 4.0.6144.1, 8.0.28991029248.1, 8.0.260919263232.15, 8.0.21743271936.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{4}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.66j1.14 | $x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{5} + 16 x^{3} + 2$ | $16$ | $1$ | $66$ | 16T969 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$$ |
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.1.4.3a1.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ | |
3.1.4.3a1.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ |