Normalized defining polynomial
\( x^{16} + 8x^{14} + 28x^{12} - 8x^{10} - 122x^{8} + 56x^{6} + 796x^{4} - 1464x^{2} + 1089 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(484116351470433472610304\)
\(\medspace = 2^{66}\cdot 3^{8}\)
|
| |
Root discriminant: | \(30.22\) |
| |
Galois root discriminant: | $2^{555/128}3^{3/4}\approx 46.035004279893066$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-2}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{1}{4}a^{2}+\frac{1}{4}$, $\frac{1}{8}a^{7}-\frac{1}{8}a^{6}-\frac{1}{8}a^{5}+\frac{1}{8}a^{4}-\frac{1}{8}a^{3}+\frac{1}{8}a^{2}+\frac{1}{8}a-\frac{1}{8}$, $\frac{1}{8}a^{8}-\frac{1}{4}a^{4}+\frac{1}{8}$, $\frac{1}{8}a^{9}-\frac{1}{4}a^{4}-\frac{1}{8}a+\frac{1}{4}$, $\frac{1}{16}a^{10}-\frac{1}{16}a^{8}-\frac{1}{8}a^{6}+\frac{1}{8}a^{4}+\frac{1}{16}a^{2}-\frac{1}{16}$, $\frac{1}{16}a^{11}-\frac{1}{16}a^{9}-\frac{1}{8}a^{6}+\frac{1}{8}a^{4}-\frac{1}{16}a^{3}+\frac{1}{8}a^{2}+\frac{1}{16}a-\frac{1}{8}$, $\frac{1}{32}a^{12}+\frac{1}{32}a^{8}-\frac{5}{32}a^{4}+\frac{3}{32}$, $\frac{1}{32}a^{13}+\frac{1}{32}a^{9}+\frac{3}{32}a^{5}-\frac{1}{4}a^{4}-\frac{5}{32}a+\frac{1}{4}$, $\frac{1}{202560}a^{14}+\frac{2027}{202560}a^{12}+\frac{3361}{202560}a^{10}+\frac{91}{202560}a^{8}-\frac{6293}{202560}a^{6}-\frac{45511}{202560}a^{4}+\frac{63667}{202560}a^{2}-\frac{27797}{67520}$, $\frac{1}{6684480}a^{15}+\frac{77987}{6684480}a^{13}+\frac{142621}{6684480}a^{11}+\frac{139351}{6684480}a^{9}-\frac{6293}{6684480}a^{7}-\frac{1}{8}a^{6}+\frac{587489}{6684480}a^{5}+\frac{1}{8}a^{4}-\frac{278153}{6684480}a^{3}+\frac{1}{8}a^{2}+\frac{904823}{2228160}a-\frac{1}{8}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{7621}{3342240}a^{15}+\frac{46877}{3342240}a^{13}+\frac{59971}{3342240}a^{11}-\frac{838349}{3342240}a^{9}-\frac{2420933}{3342240}a^{7}+\frac{949859}{3342240}a^{5}+\frac{11082877}{3342240}a^{3}-\frac{4816177}{1114080}a$, $\frac{2527}{557040}a^{15}-\frac{1}{16880}a^{14}+\frac{20249}{557040}a^{13}+\frac{83}{16880}a^{12}+\frac{68017}{557040}a^{11}+\frac{859}{16880}a^{10}-\frac{48563}{557040}a^{9}+\frac{4129}{16880}a^{8}-\frac{444551}{557040}a^{7}+\frac{6293}{16880}a^{6}-\frac{66157}{557040}a^{5}-\frac{3019}{16880}a^{4}+\frac{2111119}{557040}a^{3}-\frac{8807}{16880}a^{2}-\frac{1136299}{185680}a+\frac{66511}{16880}$, $\frac{2527}{557040}a^{15}+\frac{1}{16880}a^{14}+\frac{20249}{557040}a^{13}-\frac{83}{16880}a^{12}+\frac{68017}{557040}a^{11}-\frac{859}{16880}a^{10}-\frac{48563}{557040}a^{9}-\frac{4129}{16880}a^{8}-\frac{444551}{557040}a^{7}-\frac{6293}{16880}a^{6}-\frac{66157}{557040}a^{5}+\frac{3019}{16880}a^{4}+\frac{2111119}{557040}a^{3}+\frac{8807}{16880}a^{2}-\frac{1136299}{185680}a-\frac{66511}{16880}$, $\frac{2239}{607680}a^{15}-\frac{1}{320}a^{14}+\frac{18833}{607680}a^{13}-\frac{7}{320}a^{12}+\frac{68539}{607680}a^{11}-\frac{21}{320}a^{10}+\frac{1189}{607680}a^{9}+\frac{29}{320}a^{8}-\frac{341267}{607680}a^{7}+\frac{173}{320}a^{6}-\frac{277309}{607680}a^{5}+\frac{91}{320}a^{4}+\frac{1454713}{607680}a^{3}-\frac{567}{320}a^{2}-\frac{650803}{202560}a+\frac{1071}{320}$, $\frac{16333}{3342240}a^{15}+\frac{9}{1688}a^{14}-\frac{159341}{3342240}a^{13}+\frac{97}{1688}a^{12}-\frac{723073}{3342240}a^{11}+\frac{249}{844}a^{10}-\frac{998893}{3342240}a^{9}+\frac{515}{844}a^{8}+\frac{845249}{3342240}a^{7}+\frac{333}{1688}a^{6}+\frac{1575433}{3342240}a^{5}-\frac{1103}{1688}a^{4}-\frac{9893491}{3342240}a^{3}+\frac{492}{211}a^{2}+\frac{1816411}{1114080}a+\frac{1}{211}$, $\frac{16333}{3342240}a^{15}+\frac{9}{1688}a^{14}+\frac{159341}{3342240}a^{13}+\frac{97}{1688}a^{12}+\frac{723073}{3342240}a^{11}+\frac{249}{844}a^{10}+\frac{998893}{3342240}a^{9}+\frac{515}{844}a^{8}-\frac{845249}{3342240}a^{7}+\frac{333}{1688}a^{6}-\frac{1575433}{3342240}a^{5}-\frac{1103}{1688}a^{4}+\frac{9893491}{3342240}a^{3}+\frac{492}{211}a^{2}-\frac{1816411}{1114080}a+\frac{1}{211}$, $\frac{15119}{334224}a^{15}+\frac{893}{50640}a^{14}+\frac{110293}{334224}a^{13}+\frac{181}{3165}a^{12}+\frac{291431}{334224}a^{11}-\frac{18037}{50640}a^{10}-\frac{852331}{334224}a^{9}-\frac{12922}{3165}a^{8}-\frac{3566491}{334224}a^{7}-\frac{391069}{50640}a^{6}+\frac{744727}{334224}a^{5}+\frac{28117}{3165}a^{4}+\frac{17775701}{334224}a^{3}+\frac{1878581}{50640}a^{2}-\frac{7317275}{111408}a-\frac{73431}{1055}$
|
| |
Regulator: | \( 938616.7403722988 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 938616.7403722988 \cdot 1}{2\cdot\sqrt{484116351470433472610304}}\cr\approx \mathstrut & 1.63840917400843 \end{aligned}\]
Galois group
$C_2^6:D_4$ (as 16T969):
A solvable group of order 512 |
The 44 conjugacy class representatives for $C_2^6:D_4$ |
Character table for $C_2^6:D_4$ |
Intermediate fields
\(\Q(\sqrt{-2}) \), 4.0.6144.1, 8.0.28991029248.1, 8.0.28991029248.6, 8.0.21743271936.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{4}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.66j1.33 | $x^{16} + 8 x^{10} + 16 x^{9} + 16 x^{5} + 16 x^{4} + 16 x^{3} + 2$ | $16$ | $1$ | $66$ | 16T969 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$$ |
\(3\)
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
3.1.4.3a1.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ | |
3.1.4.3a1.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ |