Show commands: Magma
Group invariants
Abstract group: | $C_2^6:D_4$ |
| |
Order: | $512=2^{9}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $4$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $969$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $4$ |
| |
Generators: | $(1,3,2,4)(5,7,6,8)(9,15,13,11)(10,16,14,12)$, $(1,13,8,16,6,10,3,11)(2,14,7,15,5,9,4,12)$, $(1,12)(2,11)(3,9,8,14)(4,10,7,13)(5,16)(6,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 12, $C_2^3$ $16$: $D_4\times C_2$ x 6, $Q_8:C_2$ $32$: $C_2^2 \wr C_2$ x 3, 16T34 x 3, $C_4^2:C_2$ $64$: $(((C_4 \times C_2): C_2):C_2):C_2$ x 6, 32T320 $128$: $C_2 \wr C_2\wr C_2$ x 2, 16T342 x 2, 16T350 x 3 $256$: 32T5807 x 2, 32T6030 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$, $C_2 \wr C_2\wr C_2$ x 2
Low degree siblings
16T969 x 63, 32T10844 x 32, 32T10845 x 32, 32T10846 x 16, 32T10847 x 16, 32T10848 x 16, 32T19406 x 8, 32T19412 x 8, 32T19429 x 16, 32T20944 x 16, 32T21627 x 8, 32T21633 x 16, 32T21675 x 16, 32T21677 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,14)(10,13)(11,16)(12,15)$ |
2B | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,15)(12,16)$ |
2C | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2D | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,13)(10,14)(11,15)(12,16)$ |
2E | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,10)(11,12)(13,14)(15,16)$ |
2F | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 9,14)(10,13)(11,16)(12,15)$ |
2G | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 9,10)(11,12)(13,14)(15,16)$ |
2H | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 9,13)(10,14)(11,15)(12,16)$ |
2I | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2J | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$ |
2K | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 2)( 3, 7)( 4, 8)( 5, 6)( 9,10)(11,15)(12,16)(13,14)$ |
2L | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,16)(10,15)(11,14)(12,13)$ |
2M | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 3, 8)( 4, 7)( 9,14)(10,13)$ |
2N | $2^{4},1^{8}$ | $8$ | $2$ | $4$ | $( 9,15)(10,16)(11,13)(12,14)$ |
2O | $2^{6},1^{4}$ | $8$ | $2$ | $6$ | $( 3, 8)( 4, 7)( 9,13)(10,14)(11,12)(15,16)$ |
2P | $2^{4},1^{8}$ | $8$ | $2$ | $4$ | $( 3, 7)( 4, 8)(11,12)(15,16)$ |
2Q | $2^{6},1^{4}$ | $8$ | $2$ | $6$ | $( 3, 7)( 4, 8)( 9,14)(10,13)(11,15)(12,16)$ |
2R | $2^{6},1^{4}$ | $8$ | $2$ | $6$ | $( 3, 4)( 7, 8)( 9,14)(10,13)(11,12)(15,16)$ |
2S | $2^{8}$ | $8$ | $2$ | $8$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,15)(10,16)(11,13)(12,14)$ |
2T | $2^{8}$ | $8$ | $2$ | $8$ | $( 1, 6)( 2, 5)( 3, 7)( 4, 8)( 9,14)(10,13)(11,12)(15,16)$ |
2U | $2^{8}$ | $8$ | $2$ | $8$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,15)(10,16)(11,13)(12,14)$ |
2V | $2^{8}$ | $8$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,15)(10,16)(11,13)(12,14)$ |
2W | $2^{8}$ | $8$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,11)(10,12)(13,15)(14,16)$ |
2X | $2^{8}$ | $16$ | $2$ | $8$ | $( 1,13)( 2,14)( 3,12)( 4,11)( 5, 9)( 6,10)( 7,16)( 8,15)$ |
4A | $4^{4}$ | $8$ | $4$ | $12$ | $( 1, 4, 6, 7)( 2, 3, 5, 8)( 9,15,14,12)(10,16,13,11)$ |
4B | $4^{4}$ | $8$ | $4$ | $12$ | $( 1, 3, 6, 8)( 2, 4, 5, 7)( 9,12,14,15)(10,11,13,16)$ |
4C | $4^{2},2^{2},1^{4}$ | $16$ | $4$ | $8$ | $( 3, 8)( 4, 7)( 9,15,14,12)(10,16,13,11)$ |
4D | $4^{2},2^{2},1^{4}$ | $16$ | $4$ | $8$ | $( 3, 7)( 4, 8)( 9,15,10,16)(11,14,12,13)$ |
4E | $4^{2},2^{2},1^{4}$ | $16$ | $4$ | $8$ | $( 3, 4)( 7, 8)( 9,15,13,11)(10,16,14,12)$ |
4F | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1, 6)( 2, 5)( 3, 7)( 4, 8)( 9,15,13,11)(10,16,14,12)$ |
4G | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1, 6)( 2, 5)( 3, 4)( 7, 8)( 9,15,10,16)(11,14,12,13)$ |
4H | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1, 5)( 2, 6)( 3, 4)( 7, 8)( 9,15,14,12)(10,16,13,11)$ |
4I | $4^{4}$ | $16$ | $4$ | $12$ | $( 1, 4, 5, 8)( 2, 3, 6, 7)( 9,15,10,16)(11,14,12,13)$ |
4J | $4^{4}$ | $16$ | $4$ | $12$ | $( 1, 4, 5, 8)( 2, 3, 6, 7)( 9,12,10,11)(13,16,14,15)$ |
4K | $4^{4}$ | $16$ | $4$ | $12$ | $( 1,13, 6,10)( 2,14, 5, 9)( 3,12, 8,15)( 4,11, 7,16)$ |
4L | $4^{4}$ | $16$ | $4$ | $12$ | $( 1,13, 5, 9)( 2,14, 6,10)( 3,12, 7,16)( 4,11, 8,15)$ |
4M | $4^{4}$ | $16$ | $4$ | $12$ | $( 1,13, 2,14)( 3,12, 4,11)( 5, 9, 6,10)( 7,16, 8,15)$ |
4N | $4^{4}$ | $32$ | $4$ | $12$ | $( 1,16, 3,14)( 2,15, 4,13)( 5,12, 7,10)( 6,11, 8, 9)$ |
4O | $4^{4}$ | $32$ | $4$ | $12$ | $( 1,13, 2,14)( 3,16, 7,12)( 4,15, 8,11)( 5, 9, 6,10)$ |
4P | $4^{4}$ | $32$ | $4$ | $12$ | $( 1,11, 3,14)( 2,12, 4,13)( 5,15, 7,10)( 6,16, 8, 9)$ |
4Q | $4^{2},2^{4}$ | $32$ | $4$ | $10$ | $( 1,12)( 2,11)( 3, 9, 8,14)( 4,10, 7,13)( 5,16)( 6,15)$ |
8A1 | $8^{2}$ | $32$ | $8$ | $14$ | $( 1,10, 3,11, 6,13, 8,16)( 2, 9, 4,12, 5,14, 7,15)$ |
8A-1 | $8^{2}$ | $32$ | $8$ | $14$ | $( 1,16, 8,13, 6,11, 3,10)( 2,15, 7,14, 5,12, 4, 9)$ |
Malle's constant $a(G)$: $1/4$
Character table
44 x 44 character table
Regular extensions
Data not computed