Properties

Label 16T969
Order \(512\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $969$
Parity:  $1$
Primitive:  No
Nilpotency class:  $4$
Generators:  (1,3,2,4)(5,7,6,8)(9,15,13,11)(10,16,14,12), (1,13,8,16,6,10,3,11)(2,14,7,15,5,9,4,12), (1,12)(2,11)(3,9,8,14)(4,10,7,13)(5,16)(6,15)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 12, $C_2^3$
16:  $D_4\times C_2$ x 6, $Q_8:C_2$
32:  $C_2^2 \wr C_2$ x 3, 16T34 x 3, $C_4^2:C_2$
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 6, 32T320
128:  $C_2 \wr C_2\wr C_2$ x 2, 16T342 x 2, 16T350 x 3
256:  32T5807 x 2, 32T6030

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$, $C_2 \wr C_2\wr C_2$ x 2

Low degree siblings

16T969 x 63, 32T10844 x 32, 32T10845 x 32, 32T10846 x 16, 32T10847 x 16, 32T10848 x 16, 32T19406 x 8, 32T19412 x 8, 32T19429 x 16, 32T20944 x 16, 32T21627 x 8, 32T21633 x 16, 32T21675 x 16, 32T21677 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,13)(10,14)(11,15)(12,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,14)(10,13)(11,16)(12,15)$
$ 4, 4, 4, 4 $ $16$ $4$ $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,15,13,11)(10,16,14,12)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $8$ $2$ $( 3, 8)( 4, 7)( 9,13)(10,14)(11,12)(15,16)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 9,13)(10,14)(11,15)(12,16)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,14)(10,13)(11,16)(12,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,10)(11,12)(13,14)(15,16)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $4$ $2$ $( 3, 8)( 4, 7)(11,16)(12,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1, 2)( 3, 7)( 4, 8)( 5, 6)( 9,13)(10,14)(11,12)(15,16)$
$ 4, 4, 4, 4 $ $16$ $4$ $( 1, 3, 5, 7)( 2, 4, 6, 8)( 9,15,10,16)(11,14,12,13)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 9,14)(10,13)(11,16)(12,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,15)(12,16)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $8$ $2$ $( 3, 7)( 4, 8)(11,12)(15,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1, 2)( 3, 8)( 4, 7)( 5, 6)( 9,13)(10,14)(11,16)(12,15)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1, 3, 6, 8)( 2, 4, 5, 7)( 9,15,14,12)(10,16,13,11)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $8$ $2$ $( 3, 7)( 4, 8)( 9,13)(10,14)(11,16)(12,15)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $8$ $2$ $( 1, 2)( 3, 8)( 4, 7)( 5, 6)(11,12)(15,16)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1, 3, 6, 8)( 2, 4, 5, 7)( 9,11,14,16)(10,12,13,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,15)(10,16)(11,13)(12,14)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,16)(10,15)(11,14)(12,13)$
$ 8, 8 $ $32$ $8$ $( 1,13, 8,16, 6,10, 3,11)( 2,14, 7,15, 5, 9, 4,12)$
$ 4, 4, 4, 4 $ $32$ $4$ $( 1,11, 3, 9)( 2,12, 4,10)( 5,15, 7,13)( 6,16, 8,14)$
$ 8, 8 $ $32$ $8$ $( 1, 9, 4,16, 6,14, 7,11)( 2,10, 3,15, 5,13, 8,12)$
$ 4, 4, 4, 4 $ $32$ $4$ $( 1,15, 7, 9)( 2,16, 8,10)( 3,13, 5,11)( 4,14, 6,12)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $8$ $2$ $( 9,12)(10,11)(13,16)(14,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,16)(10,15)(11,14)(12,13)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,11)(10,12)(13,15)(14,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,15)(10,16)(11,13)(12,14)$
$ 4, 4, 2, 2, 2, 2 $ $16$ $4$ $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,10)(11,16)(12,15)(13,14)$
$ 4, 4, 2, 2, 1, 1, 1, 1 $ $16$ $4$ $( 1, 7, 2, 8)( 3, 6, 4, 5)(11,15)(12,16)$
$ 4, 4, 2, 2, 1, 1, 1, 1 $ $16$ $4$ $( 3, 8)( 4, 7)( 9,11,14,16)(10,12,13,15)$
$ 4, 4, 2, 2, 2, 2 $ $16$ $4$ $( 1, 2)( 3, 7)( 4, 8)( 5, 6)( 9,15,14,12)(10,16,13,11)$
$ 4, 4, 2, 2, 1, 1, 1, 1 $ $16$ $4$ $( 1, 3, 5, 7)( 2, 4, 6, 8)(11,12)(15,16)$
$ 4, 4, 2, 2, 2, 2 $ $16$ $4$ $( 1, 4, 5, 8)( 2, 3, 6, 7)( 9,13)(10,14)(11,16)(12,15)$
$ 4, 4, 2, 2, 2, 2 $ $32$ $4$ $( 1,13, 6,10)( 2,14, 5, 9)( 3,11)( 4,12)( 7,15)( 8,16)$
$ 4, 4, 4, 4 $ $16$ $4$ $( 1,11, 2,12)( 3, 9, 4,10)( 5,15, 6,16)( 7,13, 8,14)$
$ 4, 4, 4, 4 $ $16$ $4$ $( 1,15, 5,11)( 2,16, 6,12)( 3,13, 7, 9)( 4,14, 8,10)$
$ 4, 4, 4, 4 $ $32$ $4$ $( 1, 9, 2,10)( 3,12, 7,16)( 4,11, 8,15)( 5,13, 6,14)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $16$ $2$ $( 1,15)( 2,16)( 3,10)( 4, 9)( 5,11)( 6,12)( 7,14)( 8,13)$
$ 4, 4, 4, 4 $ $16$ $4$ $( 1,11, 6,16)( 2,12, 5,15)( 3,14, 8, 9)( 4,13, 7,10)$

Group invariants

Order:  $512=2^{9}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [512, 51562]
Character table: Data not available.