Normalized defining polynomial
\( x^{16} - 8x^{14} + 4x^{12} + 88x^{10} - 170x^{8} - 56x^{6} + 676x^{4} - 920x^{2} + 1681 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(484116351470433472610304\)
\(\medspace = 2^{66}\cdot 3^{8}\)
|
| |
Root discriminant: | \(30.22\) |
| |
Galois root discriminant: | $2^{555/128}3^{3/4}\approx 46.035004279893066$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-2}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{4}+\frac{1}{4}a^{2}-\frac{1}{4}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{24}a^{8}+\frac{1}{12}a^{6}+\frac{1}{12}a^{2}+\frac{7}{24}$, $\frac{1}{48}a^{9}-\frac{1}{48}a^{8}-\frac{1}{12}a^{7}+\frac{1}{12}a^{6}-\frac{1}{8}a^{5}+\frac{1}{8}a^{4}-\frac{1}{12}a^{3}+\frac{1}{12}a^{2}+\frac{1}{48}a-\frac{1}{48}$, $\frac{1}{48}a^{10}-\frac{1}{48}a^{8}-\frac{1}{8}a^{6}-\frac{5}{24}a^{4}+\frac{1}{48}a^{2}+\frac{5}{16}$, $\frac{1}{48}a^{11}-\frac{1}{48}a^{8}+\frac{1}{24}a^{7}+\frac{1}{12}a^{6}-\frac{1}{12}a^{5}+\frac{1}{8}a^{4}+\frac{3}{16}a^{3}+\frac{1}{12}a^{2}-\frac{5}{12}a-\frac{1}{48}$, $\frac{1}{288}a^{12}+\frac{1}{96}a^{8}-\frac{1}{9}a^{6}-\frac{23}{96}a^{4}+\frac{25}{288}$, $\frac{1}{576}a^{13}-\frac{1}{576}a^{12}-\frac{1}{96}a^{11}-\frac{1}{96}a^{10}-\frac{1}{192}a^{9}+\frac{1}{192}a^{8}-\frac{5}{144}a^{7}-\frac{1}{144}a^{6}-\frac{1}{64}a^{5}+\frac{19}{192}a^{4}-\frac{5}{96}a^{3}-\frac{13}{96}a^{2}+\frac{139}{576}a+\frac{101}{576}$, $\frac{1}{1728}a^{14}-\frac{1}{1728}a^{12}+\frac{5}{576}a^{10}+\frac{13}{1728}a^{8}-\frac{205}{1728}a^{6}+\frac{7}{576}a^{4}-\frac{347}{1728}a^{2}-\frac{793}{1728}$, $\frac{1}{70848}a^{15}-\frac{49}{70848}a^{13}-\frac{67}{23616}a^{11}-\frac{527}{70848}a^{9}-\frac{1}{48}a^{8}+\frac{5939}{70848}a^{7}+\frac{1}{12}a^{6}+\frac{1471}{23616}a^{5}-\frac{1}{8}a^{4}-\frac{27491}{70848}a^{3}-\frac{5}{12}a^{2}-\frac{33925}{70848}a+\frac{11}{48}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $3$ |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{31}{70848}a^{15}+\frac{1}{288}a^{14}+\frac{449}{70848}a^{13}-\frac{1}{48}a^{12}-\frac{1585}{23616}a^{11}-\frac{1}{96}a^{10}+\frac{5803}{70848}a^{9}+\frac{23}{144}a^{8}+\frac{23717}{70848}a^{7}+\frac{5}{96}a^{6}-\frac{16391}{23616}a^{5}-\frac{23}{48}a^{4}+\frac{87991}{70848}a^{3}+\frac{163}{288}a^{2}-\frac{77023}{70848}a-\frac{85}{48}$, $\frac{31}{70848}a^{15}-\frac{1}{288}a^{14}+\frac{449}{70848}a^{13}+\frac{1}{48}a^{12}-\frac{1585}{23616}a^{11}+\frac{1}{96}a^{10}+\frac{5803}{70848}a^{9}-\frac{23}{144}a^{8}+\frac{23717}{70848}a^{7}-\frac{5}{96}a^{6}-\frac{16391}{23616}a^{5}+\frac{23}{48}a^{4}+\frac{87991}{70848}a^{3}-\frac{163}{288}a^{2}-\frac{77023}{70848}a+\frac{85}{48}$, $\frac{143}{35424}a^{15}-\frac{1103}{35424}a^{13}+\frac{13}{11808}a^{11}+\frac{13937}{35424}a^{9}-\frac{20087}{35424}a^{7}-\frac{9571}{11808}a^{5}+\frac{124097}{35424}a^{3}-\frac{62393}{35424}a$, $\frac{67}{35424}a^{15}-\frac{331}{35424}a^{13}-\frac{307}{11808}a^{11}+\frac{3805}{35424}a^{9}+\frac{3821}{35424}a^{7}-\frac{2303}{11808}a^{5}+\frac{36313}{35424}a^{3}+\frac{50987}{35424}a$, $\frac{1}{3936}a^{15}+\frac{1}{144}a^{14}-\frac{49}{3936}a^{13}-\frac{17}{288}a^{12}+\frac{373}{3936}a^{11}+\frac{1}{12}a^{10}-\frac{203}{1312}a^{9}+\frac{95}{288}a^{8}-\frac{1441}{3936}a^{7}-\frac{127}{144}a^{6}+\frac{3593}{3936}a^{5}+\frac{139}{96}a^{4}-\frac{3301}{3936}a^{3}-\frac{121}{72}a^{2}+\frac{2729}{3936}a+\frac{577}{288}$, $\frac{19}{8856}a^{15}+\frac{1}{288}a^{14}+\frac{193}{8856}a^{13}-\frac{1}{72}a^{12}-\frac{283}{5904}a^{11}-\frac{3}{32}a^{10}-\frac{3221}{17712}a^{9}+\frac{41}{144}a^{8}+\frac{1070}{1107}a^{7}+\frac{215}{288}a^{6}-\frac{499}{738}a^{5}-\frac{7}{4}a^{4}-\frac{76733}{17712}a^{3}-\frac{29}{288}a^{2}+\frac{105767}{17712}a+\frac{1105}{144}$, $\frac{1}{2952}a^{15}+\frac{1}{576}a^{14}-\frac{11}{984}a^{13}-\frac{1}{64}a^{12}+\frac{175}{1968}a^{11}-\frac{7}{192}a^{10}-\frac{11}{369}a^{9}+\frac{205}{576}a^{8}-\frac{409}{492}a^{7}+\frac{41}{192}a^{6}+\frac{439}{328}a^{5}-\frac{433}{192}a^{4}+\frac{10333}{5904}a^{3}+\frac{1201}{576}a^{2}-\frac{901}{164}a+\frac{1085}{192}$
|
| |
Regulator: | \( 5691466.348652342 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 5691466.348652342 \cdot 1}{2\cdot\sqrt{484116351470433472610304}}\cr\approx \mathstrut & 9.93477985007337 \end{aligned}\] (assuming GRH)
Galois group
$C_2^6:D_4$ (as 16T969):
A solvable group of order 512 |
The 44 conjugacy class representatives for $C_2^6:D_4$ |
Character table for $C_2^6:D_4$ |
Intermediate fields
\(\Q(\sqrt{-2}) \), 4.0.6144.1, 8.0.28991029248.1, 8.0.28991029248.5, 8.0.21743271936.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.66j1.122 | $x^{16} + 8 x^{14} + 24 x^{12} + 8 x^{10} + 16 x^{3} + 2$ | $16$ | $1$ | $66$ | 16T969 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$$ |
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.1.4.3a1.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ | |
3.1.4.3a1.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ |