Normalized defining polynomial
\( x^{16} + 20x^{12} - 32x^{10} - 42x^{8} + 128x^{6} + 372x^{4} + 288x^{2} + 81 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(121029087867608368152576\)
\(\medspace = 2^{64}\cdot 3^{8}\)
|
| |
Root discriminant: | \(27.71\) |
| |
Galois root discriminant: | $2^{555/128}3^{3/4}\approx 46.035004279893066$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-2}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{4}a^{8}-\frac{1}{4}$, $\frac{1}{4}a^{9}-\frac{1}{4}a$, $\frac{1}{8}a^{10}-\frac{1}{8}a^{8}-\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{3}{8}a^{2}-\frac{1}{8}$, $\frac{1}{8}a^{11}-\frac{1}{8}a^{9}-\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{1}{8}a^{3}-\frac{1}{4}a^{2}+\frac{1}{8}a-\frac{1}{4}$, $\frac{1}{24}a^{12}-\frac{1}{24}a^{8}+\frac{1}{6}a^{6}+\frac{1}{8}a^{4}-\frac{1}{6}a^{2}-\frac{1}{8}$, $\frac{1}{144}a^{13}-\frac{1}{48}a^{12}+\frac{1}{24}a^{11}-\frac{7}{144}a^{9}+\frac{1}{48}a^{8}+\frac{1}{9}a^{7}-\frac{1}{12}a^{6}+\frac{3}{16}a^{5}+\frac{3}{16}a^{4}-\frac{35}{72}a^{3}-\frac{5}{12}a^{2}+\frac{17}{48}a-\frac{3}{16}$, $\frac{1}{141552}a^{14}-\frac{725}{47184}a^{12}+\frac{6347}{141552}a^{10}-\frac{3437}{141552}a^{8}+\frac{8753}{47184}a^{6}+\frac{3035}{141552}a^{4}-\frac{4031}{15728}a^{2}+\frac{6961}{15728}$, $\frac{1}{424656}a^{15}+\frac{43}{23592}a^{13}-\frac{1}{48}a^{12}-\frac{11347}{424656}a^{11}-\frac{1505}{26541}a^{9}+\frac{1}{48}a^{8}-\frac{10907}{141552}a^{7}+\frac{1}{6}a^{6}+\frac{23635}{212328}a^{5}-\frac{1}{16}a^{4}-\frac{57311}{141552}a^{3}-\frac{1}{6}a^{2}-\frac{2929}{11796}a-\frac{7}{16}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $3$ |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{4813}{212328}a^{15}+\frac{379}{35388}a^{13}-\frac{96737}{212328}a^{11}+\frac{25234}{26541}a^{9}+\frac{42511}{70776}a^{7}-\frac{319021}{106164}a^{5}-\frac{51533}{7864}a^{3}-\frac{8810}{2949}a$, $\frac{203}{17694}a^{15}-\frac{79}{8847}a^{13}+\frac{8303}{35388}a^{11}-\frac{9611}{17694}a^{9}-\frac{1099}{8847}a^{7}+\frac{32203}{17694}a^{5}+\frac{85519}{35388}a^{3}+\frac{2734}{2949}a$, $\frac{3727}{106164}a^{15}-\frac{5057}{35388}a^{14}+\frac{919}{11796}a^{13}+\frac{359}{5898}a^{12}-\frac{164875}{212328}a^{11}-\frac{203207}{70776}a^{10}+\frac{579439}{212328}a^{9}+\frac{408917}{70776}a^{8}-\frac{45023}{17694}a^{7}+\frac{11201}{2949}a^{6}-\frac{236935}{53082}a^{5}-\frac{732751}{35388}a^{4}-\frac{158141}{70776}a^{3}-\frac{350339}{7864}a^{2}+\frac{202859}{23592}a-\frac{165255}{7864}$, $\frac{2633}{424656}a^{15}-\frac{901}{23592}a^{14}+\frac{635}{47184}a^{13}+\frac{139}{5898}a^{12}-\frac{61597}{424656}a^{11}-\frac{9115}{11796}a^{10}+\frac{208519}{424656}a^{9}+\frac{39607}{23592}a^{8}-\frac{87701}{141552}a^{7}+\frac{17179}{23592}a^{6}-\frac{64243}{424656}a^{5}-\frac{68233}{11796}a^{4}-\frac{136121}{141552}a^{3}-\frac{60043}{5898}a^{2}+\frac{16433}{47184}a-\frac{36351}{7864}$, $\frac{2633}{424656}a^{15}-\frac{901}{23592}a^{14}-\frac{635}{47184}a^{13}+\frac{139}{5898}a^{12}+\frac{61597}{424656}a^{11}-\frac{9115}{11796}a^{10}-\frac{208519}{424656}a^{9}+\frac{39607}{23592}a^{8}+\frac{87701}{141552}a^{7}+\frac{17179}{23592}a^{6}+\frac{64243}{424656}a^{5}-\frac{68233}{11796}a^{4}+\frac{136121}{141552}a^{3}-\frac{60043}{5898}a^{2}-\frac{16433}{47184}a-\frac{36351}{7864}$, $\frac{55261}{424656}a^{15}-\frac{2033}{47184}a^{14}-\frac{4291}{47184}a^{13}+\frac{241}{47184}a^{12}+\frac{1125821}{424656}a^{11}-\frac{39913}{47184}a^{10}-\frac{2546699}{424656}a^{9}+\frac{22367}{15728}a^{8}-\frac{215639}{141552}a^{7}+\frac{94585}{47184}a^{6}+\frac{7798763}{424656}a^{5}-\frac{313441}{47184}a^{4}+\frac{5010985}{141552}a^{3}-\frac{679519}{47184}a^{2}+\frac{525251}{47184}a-\frac{166479}{15728}$, $\frac{19841}{106164}a^{15}-\frac{2179}{141552}a^{14}-\frac{2209}{17694}a^{13}+\frac{359}{15728}a^{12}+\frac{810335}{212328}a^{11}-\frac{46487}{141552}a^{10}-\frac{1803521}{212328}a^{9}+\frac{140315}{141552}a^{8}-\frac{2384}{983}a^{7}-\frac{14383}{47184}a^{6}+\frac{2765017}{106164}a^{5}-\frac{119567}{141552}a^{4}+\frac{3326105}{70776}a^{3}+\frac{78989}{47184}a^{2}+\frac{120077}{7864}a+\frac{135325}{15728}$
|
| |
Regulator: | \( 1428276.4899083953 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 1428276.4899083953 \cdot 1}{2\cdot\sqrt{121029087867608368152576}}\cr\approx \mathstrut & 4.98627651400780 \end{aligned}\] (assuming GRH)
Galois group
$C_2^6:D_4$ (as 16T969):
A solvable group of order 512 |
The 44 conjugacy class representatives for $C_2^6:D_4$ |
Character table for $C_2^6:D_4$ |
Intermediate fields
\(\Q(\sqrt{-2}) \), 4.0.3072.2, 8.0.14495514624.9, 8.0.14495514624.10, 8.0.5435817984.12 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.64l1.989 | $x^{16} + 8 x^{14} + 4 x^{12} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 8 x^{4} + 16 x + 2$ | $16$ | $1$ | $64$ | 16T969 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$$ |
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.2.4.6a1.2 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 64 x + 19$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |