Normalized defining polynomial
\( x^{16} - 16 x^{13} + 52 x^{12} - 80 x^{11} + 112 x^{10} + 64 x^{9} + 242 x^{8} + 320 x^{7} + 256 x^{6} + \cdots + 9 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(4357047163233901253492736\)
\(\medspace = 2^{66}\cdot 3^{10}\)
|
| |
| Root discriminant: | \(34.67\) |
| |
| Galois root discriminant: | $2^{555/128}3^{3/4}\approx 46.035004279893066$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-2}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{8}+\frac{1}{4}a^{2}-\frac{1}{4}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{8}+\frac{1}{4}a^{4}-\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{12}a^{14}-\frac{1}{12}a^{11}+\frac{1}{12}a^{10}+\frac{1}{12}a^{9}-\frac{1}{6}a^{8}+\frac{1}{3}a^{7}+\frac{5}{12}a^{6}-\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{39516280142700}a^{15}-\frac{674814398681}{39516280142700}a^{14}-\frac{320260243569}{6586046690450}a^{13}-\frac{800647738408}{9879070035675}a^{12}+\frac{265769307112}{3293023345225}a^{11}+\frac{1813411622831}{39516280142700}a^{10}-\frac{2310818765749}{39516280142700}a^{9}+\frac{603375918527}{9879070035675}a^{8}+\frac{4097742455123}{13172093380900}a^{7}+\frac{658653950431}{39516280142700}a^{6}-\frac{588575733761}{1317209338090}a^{5}+\frac{290825143076}{1975814007135}a^{4}+\frac{1220444214278}{3293023345225}a^{3}+\frac{1890545886769}{13172093380900}a^{2}+\frac{5666563927377}{13172093380900}a-\frac{1157501163903}{3293023345225}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{14477660987}{9879070035675}a^{15}+\frac{1298428399}{3293023345225}a^{14}+\frac{28593837137}{6586046690450}a^{13}+\frac{193306152209}{9879070035675}a^{12}-\frac{769248761153}{9879070035675}a^{11}+\frac{647663969353}{9879070035675}a^{10}+\frac{936932699938}{9879070035675}a^{9}-\frac{6656424090671}{9879070035675}a^{8}+\frac{7410203095997}{9879070035675}a^{7}-\frac{10785687032347}{9879070035675}a^{6}+\frac{5592008030329}{3951628014270}a^{5}-\frac{37309343921}{658604669045}a^{4}+\frac{2981913982581}{3293023345225}a^{3}+\frac{4755212788747}{3293023345225}a^{2}+\frac{658681867451}{3293023345225}a+\frac{2022526073044}{3293023345225}$, $\frac{1620977153081}{7903256028540}a^{15}+\frac{141850254579}{1317209338090}a^{14}+\frac{148867061557}{2634418676180}a^{13}-\frac{6507003545843}{1975814007135}a^{12}+\frac{70253853628859}{7903256028540}a^{11}-\frac{46281992624147}{3951628014270}a^{10}+\frac{138363603956861}{7903256028540}a^{9}+\frac{82549317562609}{3951628014270}a^{8}+\frac{482248421105749}{7903256028540}a^{7}+\frac{386765066973683}{3951628014270}a^{6}+\frac{150955694649115}{1580651205708}a^{5}+\frac{11295339702870}{131720933809}a^{4}+\frac{156290850295697}{2634418676180}a^{3}+\frac{29168781566347}{1317209338090}a^{2}+\frac{25120719599587}{2634418676180}a-\frac{467220174431}{1317209338090}$, $\frac{117048828501}{13172093380900}a^{15}-\frac{742120123808}{9879070035675}a^{14}-\frac{608586647211}{13172093380900}a^{13}+\frac{1350389169691}{6586046690450}a^{12}+\frac{30369086521943}{39516280142700}a^{11}-\frac{24366811942142}{9879070035675}a^{10}+\frac{61692548626897}{39516280142700}a^{9}-\frac{24415955370506}{9879070035675}a^{8}-\frac{612143189601107}{39516280142700}a^{7}-\frac{188103636388867}{9879070035675}a^{6}-\frac{251357121761237}{7903256028540}a^{5}-\frac{65733802141961}{3951628014270}a^{4}-\frac{130569125400011}{13172093380900}a^{3}-\frac{13935625153908}{3293023345225}a^{2}-\frac{17539564304081}{13172093380900}a-\frac{3827812241791}{3293023345225}$, $\frac{6003772594193}{19758140071350}a^{15}+\frac{9348293334959}{39516280142700}a^{14}-\frac{348359268159}{6586046690450}a^{13}-\frac{194164271184877}{39516280142700}a^{12}+\frac{118853704294496}{9879070035675}a^{11}-\frac{147032039980853}{13172093380900}a^{10}+\frac{43392179131153}{3293023345225}a^{9}+\frac{622454528854971}{13172093380900}a^{8}+\frac{17\cdots 17}{19758140071350}a^{7}+\frac{18\cdots 97}{13172093380900}a^{6}+\frac{547548289608287}{3951628014270}a^{5}+\frac{836127291439159}{7903256028540}a^{4}+\frac{253160465912158}{3293023345225}a^{3}+\frac{400450838779159}{13172093380900}a^{2}+\frac{27565895475993}{3293023345225}a+\frac{40552354944943}{13172093380900}$, $\frac{23805514352927}{39516280142700}a^{15}-\frac{1113700327603}{9879070035675}a^{14}-\frac{1658435016013}{6586046690450}a^{13}-\frac{96299345417741}{9879070035675}a^{12}+\frac{218441735397973}{6586046690450}a^{11}-\frac{19\cdots 63}{39516280142700}a^{10}+\frac{25\cdots 77}{39516280142700}a^{9}+\frac{15\cdots 41}{39516280142700}a^{8}+\frac{15\cdots 21}{13172093380900}a^{7}+\frac{13\cdots 53}{9879070035675}a^{6}+\frac{66442720526203}{1317209338090}a^{5}+\frac{30953913945847}{1975814007135}a^{4}-\frac{110392399600213}{6586046690450}a^{3}-\frac{708217672012237}{13172093380900}a^{2}-\frac{211446296999521}{13172093380900}a-\frac{223202470852349}{13172093380900}$, $\frac{1645903053311}{19758140071350}a^{15}+\frac{6283260642893}{39516280142700}a^{14}-\frac{288007182234}{3293023345225}a^{13}-\frac{55968656173129}{39516280142700}a^{12}+\frac{18153431037242}{9879070035675}a^{11}+\frac{40057881203369}{13172093380900}a^{10}-\frac{21792918069269}{3293023345225}a^{9}+\frac{329115298245917}{13172093380900}a^{8}+\frac{577096183065959}{19758140071350}a^{7}+\frac{637690526996219}{13172093380900}a^{6}+\frac{94104797917972}{1975814007135}a^{5}+\frac{163590442869643}{7903256028540}a^{4}+\frac{50782973629466}{3293023345225}a^{3}+\frac{129834308220493}{13172093380900}a^{2}-\frac{3026080218339}{3293023345225}a+\frac{32221565654761}{13172093380900}$, $\frac{916915078649}{13172093380900}a^{15}-\frac{3823986176431}{13172093380900}a^{14}+\frac{1076245962043}{6586046690450}a^{13}+\frac{15796428416893}{13172093380900}a^{12}+\frac{5852975549497}{6586046690450}a^{11}-\frac{40053189383886}{3293023345225}a^{10}+\frac{299062400684751}{13172093380900}a^{9}-\frac{286252755263421}{6586046690450}a^{8}-\frac{406348565502281}{13172093380900}a^{7}-\frac{854862549438319}{13172093380900}a^{6}-\frac{93361240774233}{1317209338090}a^{5}-\frac{109313031944931}{2634418676180}a^{4}-\frac{223265546789157}{6586046690450}a^{3}-\frac{56180737687417}{3293023345225}a^{2}+\frac{6450359709431}{13172093380900}a-\frac{30434566361393}{6586046690450}$
|
| |
| Regulator: | \( 2641149.468774267 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 2641149.468774267 \cdot 2}{2\cdot\sqrt{4357047163233901253492736}}\cr\approx \mathstrut & 3.07351824831852 \end{aligned}\]
Galois group
$C_2^6:D_4$ (as 16T969):
| A solvable group of order 512 |
| The 44 conjugacy class representatives for $C_2^6:D_4$ |
| Character table for $C_2^6:D_4$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 4.0.6144.1, 8.0.260919263232.14, 8.0.28991029248.1, 8.0.21743271936.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{4}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.16.66j1.32 | $x^{16} + 16 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{5} + 16 x^{4} + 16 x^{3} + 2$ | $16$ | $1$ | $66$ | 16T969 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$$ |
|
\(3\)
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.4.3a1.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ | |
| 3.1.4.3a1.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |