Normalized defining polynomial
\( x^{16} - 16x^{14} + 68x^{12} - 16x^{10} - 10x^{8} - 112x^{6} + 292x^{4} - 240x^{2} + 81 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(1089261790808475313373184\)
\(\medspace = 2^{64}\cdot 3^{10}\)
|
| |
Root discriminant: | \(31.79\) |
| |
Galois root discriminant: | $2^{555/128}3^{3/4}\approx 46.035004279893066$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-2}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{4}a^{8}-\frac{1}{4}$, $\frac{1}{4}a^{9}-\frac{1}{4}a$, $\frac{1}{8}a^{10}-\frac{1}{8}a^{8}-\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{3}{8}a^{2}-\frac{1}{8}$, $\frac{1}{8}a^{11}-\frac{1}{8}a^{9}-\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{1}{8}a^{3}-\frac{1}{4}a^{2}+\frac{1}{8}a-\frac{1}{4}$, $\frac{1}{40}a^{12}+\frac{1}{20}a^{10}-\frac{1}{8}a^{8}-\frac{1}{10}a^{6}+\frac{3}{40}a^{4}+\frac{9}{20}a^{2}+\frac{9}{40}$, $\frac{1}{80}a^{13}-\frac{1}{80}a^{12}+\frac{1}{40}a^{11}-\frac{1}{40}a^{10}+\frac{1}{16}a^{9}-\frac{1}{16}a^{8}-\frac{1}{20}a^{7}+\frac{1}{20}a^{6}-\frac{17}{80}a^{5}+\frac{17}{80}a^{4}-\frac{11}{40}a^{3}+\frac{11}{40}a^{2}-\frac{21}{80}a+\frac{21}{80}$, $\frac{1}{40560}a^{14}+\frac{203}{40560}a^{12}+\frac{149}{3120}a^{10}+\frac{4391}{40560}a^{8}-\frac{1681}{40560}a^{6}+\frac{29}{240}a^{4}-\frac{7313}{40560}a^{2}-\frac{1917}{13520}$, $\frac{1}{121680}a^{15}-\frac{19}{7605}a^{13}-\frac{1}{80}a^{12}+\frac{71}{9360}a^{11}-\frac{1}{40}a^{10}+\frac{116}{7605}a^{9}-\frac{1}{16}a^{8}-\frac{9793}{121680}a^{7}-\frac{1}{5}a^{6}+\frac{1}{36}a^{5}-\frac{3}{80}a^{4}-\frac{46859}{121680}a^{3}+\frac{1}{40}a^{2}-\frac{437}{10140}a+\frac{1}{80}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $3$ |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{5119}{121680}a^{15}+\frac{191}{2535}a^{14}+\frac{76243}{121680}a^{13}-\frac{4583}{4056}a^{12}-\frac{20171}{9360}a^{11}+\frac{6191}{1560}a^{10}-\frac{230369}{121680}a^{9}+\frac{31339}{10140}a^{8}-\frac{135641}{121680}a^{7}+\frac{13129}{10140}a^{6}+\frac{3109}{720}a^{5}-\frac{991}{120}a^{4}-\frac{833113}{121680}a^{3}+\frac{258079}{20280}a^{2}+\frac{71963}{40560}a-\frac{2966}{845}$, $\frac{4093}{121680}a^{15}-\frac{83}{20280}a^{14}+\frac{68539}{121680}a^{13}+\frac{389}{20280}a^{12}-\frac{4909}{1872}a^{11}+\frac{31}{78}a^{10}+\frac{152887}{121680}a^{9}-\frac{10627}{5070}a^{8}+\frac{402901}{121680}a^{7}-\frac{56179}{20280}a^{6}+\frac{4909}{720}a^{5}-\frac{211}{120}a^{4}-\frac{1424827}{121680}a^{3}+\frac{54299}{10140}a^{2}+\frac{45079}{8112}a-\frac{2155}{676}$, $\frac{107}{12168}a^{15}+\frac{7}{676}a^{14}+\frac{3749}{30420}a^{13}-\frac{25}{169}a^{12}-\frac{799}{2340}a^{11}+\frac{45}{104}a^{10}-\frac{8467}{12168}a^{9}+\frac{1141}{1352}a^{8}-\frac{56867}{60840}a^{7}+\frac{58}{169}a^{6}+\frac{17}{45}a^{5}-\frac{3}{4}a^{4}+\frac{491}{15210}a^{3}+\frac{877}{1352}a^{2}-\frac{19501}{20280}a+\frac{437}{1352}$, $\frac{107}{12168}a^{15}-\frac{7}{676}a^{14}+\frac{3749}{30420}a^{13}+\frac{25}{169}a^{12}-\frac{799}{2340}a^{11}-\frac{45}{104}a^{10}-\frac{8467}{12168}a^{9}-\frac{1141}{1352}a^{8}-\frac{56867}{60840}a^{7}-\frac{58}{169}a^{6}+\frac{17}{45}a^{5}+\frac{3}{4}a^{4}+\frac{491}{15210}a^{3}-\frac{877}{1352}a^{2}-\frac{19501}{20280}a-\frac{437}{1352}$, $\frac{17}{121680}a^{15}+\frac{1071}{13520}a^{14}+\frac{3647}{121680}a^{13}-\frac{16483}{13520}a^{12}-\frac{3781}{9360}a^{11}+\frac{955}{208}a^{10}+\frac{143363}{121680}a^{9}+\frac{31601}{13520}a^{8}+\frac{40597}{24336}a^{7}-\frac{33287}{13520}a^{6}+\frac{2873}{720}a^{5}-\frac{933}{80}a^{4}-\frac{89515}{24336}a^{3}+\frac{257469}{13520}a^{2}+\frac{111343}{40560}a-\frac{19661}{2704}$, $\frac{12187}{121680}a^{15}+\frac{71}{2704}a^{14}+\frac{205027}{121680}a^{13}-\frac{1473}{2704}a^{12}-\frac{74591}{9360}a^{11}+\frac{751}{208}a^{10}+\frac{583783}{121680}a^{9}-\frac{17113}{2704}a^{8}+\frac{197831}{24336}a^{7}-\frac{20655}{2704}a^{6}+\frac{12373}{720}a^{5}-\frac{111}{16}a^{4}-\frac{870209}{24336}a^{3}+\frac{53349}{2704}a^{2}+\frac{1195763}{40560}a-\frac{61871}{2704}$, $\frac{1229}{13520}a^{15}-\frac{57}{6760}a^{14}+\frac{3777}{2704}a^{13}+\frac{107}{1690}a^{12}-\frac{5463}{1040}a^{11}+\frac{243}{520}a^{10}-\frac{34169}{13520}a^{9}-\frac{5323}{1690}a^{8}+\frac{22401}{13520}a^{7}-\frac{29919}{6760}a^{6}+\frac{1023}{80}a^{5}-\frac{5}{2}a^{4}-\frac{240737}{13520}a^{3}+\frac{39633}{6760}a^{2}+\frac{58197}{13520}a-\frac{9773}{1690}$
|
| |
Regulator: | \( 1124409.7240067893 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 1124409.7240067893 \cdot 2}{2\cdot\sqrt{1089261790808475313373184}}\cr\approx \mathstrut & 2.61696192978090 \end{aligned}\] (assuming GRH)
Galois group
$C_2^6:D_4$ (as 16T969):
A solvable group of order 512 |
The 44 conjugacy class representatives for $C_2^6:D_4$ |
Character table for $C_2^6:D_4$ |
Intermediate fields
\(\Q(\sqrt{-2}) \), 4.0.3072.2, 8.0.130459631616.3, 8.0.14495514624.10, 8.0.5435817984.12 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{6}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.64l1.995 | $x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 8 x^{4} + 16 x + 2$ | $16$ | $1$ | $64$ | 16T969 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$$ |
\(3\)
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.2.4.6a1.2 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 64 x + 19$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |