Normalized defining polynomial
\( x^{16} - 8x^{14} + 28x^{12} - 40x^{10} + 10x^{8} - 104x^{6} + 628x^{4} + 24x^{2} + 9 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(121029087867608368152576\)
\(\medspace = 2^{64}\cdot 3^{8}\)
|
| |
Root discriminant: | \(27.71\) |
| |
Galois root discriminant: | $2^{555/128}3^{3/4}\approx 46.035004279893066$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-2}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{8}a^{8}-\frac{1}{2}a^{6}-\frac{1}{4}a^{4}-\frac{1}{2}a^{2}+\frac{3}{8}$, $\frac{1}{8}a^{9}-\frac{1}{2}a^{7}-\frac{1}{4}a^{5}-\frac{1}{2}a^{3}+\frac{3}{8}a$, $\frac{1}{16}a^{10}-\frac{1}{16}a^{8}-\frac{1}{2}a^{7}+\frac{1}{8}a^{6}-\frac{1}{2}a^{5}+\frac{3}{8}a^{4}-\frac{1}{2}a^{3}-\frac{1}{16}a^{2}-\frac{1}{2}a+\frac{1}{16}$, $\frac{1}{16}a^{11}-\frac{1}{16}a^{9}+\frac{1}{8}a^{7}-\frac{1}{2}a^{6}+\frac{3}{8}a^{5}-\frac{1}{2}a^{4}-\frac{1}{16}a^{3}-\frac{1}{2}a^{2}+\frac{1}{16}a-\frac{1}{2}$, $\frac{1}{16}a^{12}-\frac{1}{16}a^{8}-\frac{7}{16}a^{4}-\frac{1}{2}a^{2}-\frac{5}{16}$, $\frac{1}{16}a^{13}-\frac{1}{16}a^{9}-\frac{7}{16}a^{5}-\frac{1}{2}a^{3}-\frac{5}{16}a$, $\frac{1}{1249872}a^{14}-\frac{911}{78117}a^{12}+\frac{815}{48072}a^{10}-\frac{55693}{1249872}a^{8}-\frac{1}{2}a^{7}-\frac{378113}{1249872}a^{6}-\frac{1}{2}a^{5}-\frac{308497}{624936}a^{4}-\frac{1}{2}a^{3}-\frac{21317}{312468}a^{2}-\frac{1}{2}a+\frac{171511}{416624}$, $\frac{1}{3749616}a^{15}-\frac{92693}{3749616}a^{13}-\frac{4379}{288432}a^{11}+\frac{100541}{3749616}a^{9}-\frac{1784219}{3749616}a^{7}-\frac{1788749}{3749616}a^{5}+\frac{1867657}{3749616}a^{3}-\frac{140957}{1249872}a$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $3$ |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{44807}{624936}a^{14}+\frac{90295}{156234}a^{12}-\frac{12271}{6009}a^{10}+\frac{931747}{312468}a^{8}-\frac{530705}{624936}a^{6}+\frac{1143661}{156234}a^{4}-\frac{14110657}{312468}a^{2}+\frac{37405}{104156}$, $\frac{92021}{3749616}a^{15}+\frac{1009}{208312}a^{14}-\frac{732259}{3749616}a^{13}-\frac{16337}{416624}a^{12}+\frac{195869}{288432}a^{11}+\frac{1105}{8012}a^{10}-\frac{3575033}{3749616}a^{9}-\frac{82267}{416624}a^{8}+\frac{694001}{3749616}a^{7}+\frac{7411}{208312}a^{6}-\frac{8859091}{3749616}a^{5}-\frac{299497}{416624}a^{4}+\frac{57197081}{3749616}a^{3}+\frac{90817}{26039}a^{2}+\frac{948689}{1249872}a-\frac{81687}{416624}$, $\frac{32389}{937404}a^{15}+\frac{7117}{312468}a^{14}+\frac{1023419}{3749616}a^{13}-\frac{226415}{1249872}a^{12}-\frac{136199}{144216}a^{11}+\frac{7679}{12018}a^{10}+\frac{4928857}{3749616}a^{9}-\frac{1177447}{1249872}a^{8}-\frac{61738}{234351}a^{7}+\frac{100429}{312468}a^{6}+\frac{13381379}{3749616}a^{5}-\frac{3180539}{1249872}a^{4}-\frac{39455417}{1874808}a^{3}+\frac{1083763}{78117}a^{2}-\frac{2632561}{1249872}a-\frac{232093}{416624}$, $\frac{32389}{937404}a^{15}-\frac{7117}{312468}a^{14}+\frac{1023419}{3749616}a^{13}+\frac{226415}{1249872}a^{12}-\frac{136199}{144216}a^{11}-\frac{7679}{12018}a^{10}+\frac{4928857}{3749616}a^{9}+\frac{1177447}{1249872}a^{8}-\frac{61738}{234351}a^{7}-\frac{100429}{312468}a^{6}+\frac{13381379}{3749616}a^{5}+\frac{3180539}{1249872}a^{4}-\frac{39455417}{1874808}a^{3}-\frac{1083763}{78117}a^{2}-\frac{2632561}{1249872}a+\frac{232093}{416624}$, $\frac{210941}{1874808}a^{15}+\frac{3340823}{3749616}a^{13}-\frac{110879}{36054}a^{11}+\frac{15856951}{3749616}a^{9}-\frac{1359815}{1874808}a^{7}+\frac{43674923}{3749616}a^{5}-\frac{65423077}{937404}a^{3}-\frac{11140843}{1249872}a$, $\frac{143003}{3749616}a^{15}-\frac{27229}{1249872}a^{14}+\frac{296893}{937404}a^{13}+\frac{105889}{624936}a^{12}-\frac{336275}{288432}a^{11}-\frac{54877}{96144}a^{10}+\frac{1758527}{937404}a^{9}+\frac{229195}{312468}a^{8}-\frac{3325103}{3749616}a^{7}-\frac{25489}{1249872}a^{6}+\frac{3811513}{937404}a^{5}+\frac{1393675}{624936}a^{4}-\frac{93833711}{3749616}a^{3}-\frac{16201321}{1249872}a^{2}+\frac{2197603}{312468}a-\frac{156785}{52078}$, $\frac{10969}{937404}a^{15}-\frac{7673}{416624}a^{14}+\frac{305165}{3749616}a^{13}+\frac{56221}{416624}a^{12}-\frac{35435}{144216}a^{11}-\frac{14279}{32048}a^{10}+\frac{789361}{3749616}a^{9}+\frac{240711}{416624}a^{8}+\frac{105925}{468702}a^{7}-\frac{56409}{416624}a^{6}+\frac{4391297}{3749616}a^{5}+\frac{1059893}{416624}a^{4}-\frac{10213625}{1874808}a^{3}-\frac{3926439}{416624}a^{2}-\frac{3877525}{1249872}a-\frac{290997}{416624}$
|
| |
Regulator: | \( 197766.68627630812 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 197766.68627630812 \cdot 1}{2\cdot\sqrt{121029087867608368152576}}\cr\approx \mathstrut & 0.690426111470861 \end{aligned}\]
Galois group
$C_2^6:D_4$ (as 16T969):
A solvable group of order 512 |
The 44 conjugacy class representatives for $C_2^6:D_4$ |
Character table for $C_2^6:D_4$ |
Intermediate fields
\(\Q(\sqrt{-2}) \), 4.0.3072.2, 8.0.14495514624.10, 8.0.14495514624.8, 8.0.5435817984.11 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{6}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.64l1.967 | $x^{16} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 4 x^{8} + 8 x^{6} + 8 x^{4} + 16 x + 2$ | $16$ | $1$ | $64$ | 16T969 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$$ |
\(3\)
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
3.2.4.6a1.2 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 64 x + 19$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |