Normalized defining polynomial
\( x^{16} - 16 x^{13} + 84 x^{12} - 96 x^{11} + 48 x^{10} + 528 x^{9} + 366 x^{8} + 416 x^{7} + 1536 x^{6} + \cdots + 225 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(4357047163233901253492736\)
\(\medspace = 2^{66}\cdot 3^{10}\)
|
| |
Root discriminant: | \(34.67\) |
| |
Galois root discriminant: | $2^{555/128}3^{3/4}\approx 46.035004279893066$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-2}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{6}a^{6}+\frac{1}{3}a^{5}-\frac{1}{2}a^{4}+\frac{1}{3}a^{3}+\frac{1}{6}a^{2}-\frac{1}{2}$, $\frac{1}{6}a^{7}-\frac{1}{6}a^{5}+\frac{1}{3}a^{4}-\frac{1}{2}a^{3}-\frac{1}{3}a^{2}-\frac{1}{2}a$, $\frac{1}{6}a^{8}-\frac{1}{3}a^{5}-\frac{1}{3}a^{2}-\frac{1}{2}$, $\frac{1}{6}a^{9}-\frac{1}{3}a^{5}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{2}a$, $\frac{1}{18}a^{10}-\frac{1}{18}a^{9}+\frac{1}{18}a^{7}-\frac{1}{18}a^{6}-\frac{1}{6}a^{5}-\frac{5}{18}a^{4}-\frac{7}{18}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{2}$, $\frac{1}{36}a^{11}-\frac{1}{36}a^{10}-\frac{1}{12}a^{9}+\frac{1}{36}a^{8}+\frac{1}{18}a^{7}-\frac{7}{18}a^{5}+\frac{2}{9}a^{4}-\frac{5}{12}a^{3}-\frac{5}{12}a^{2}+\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{36}a^{12}-\frac{1}{12}a^{8}-\frac{1}{3}a^{5}+\frac{5}{12}a^{4}+\frac{2}{9}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a-\frac{1}{4}$, $\frac{1}{36}a^{13}-\frac{1}{12}a^{9}+\frac{1}{12}a^{5}+\frac{2}{9}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{4}a$, $\frac{1}{108}a^{14}-\frac{1}{108}a^{13}-\frac{1}{36}a^{10}-\frac{1}{36}a^{9}-\frac{1}{36}a^{6}+\frac{5}{108}a^{5}+\frac{11}{54}a^{4}-\frac{4}{9}a^{3}-\frac{17}{36}a^{2}-\frac{1}{12}a-\frac{1}{6}$, $\frac{1}{15\cdots 40}a^{15}+\frac{272784225899}{76032299967327}a^{14}+\frac{2034450493543}{152064599934654}a^{13}-\frac{49843224107}{506881999782180}a^{12}-\frac{2927742381637}{506881999782180}a^{11}+\frac{929769700349}{42240166648515}a^{10}+\frac{2352358893664}{126720499945545}a^{9}-\frac{3862893851573}{168960666594060}a^{8}+\frac{25423276297367}{506881999782180}a^{7}-\frac{8579093795717}{760322999673270}a^{6}+\frac{6495717750649}{34560136348785}a^{5}+\frac{626843944012043}{15\cdots 40}a^{4}+\frac{171893200885651}{506881999782180}a^{3}-\frac{3425158867573}{50688199978218}a^{2}+\frac{8944281390467}{28160111099010}a+\frac{9551422660171}{33792133318812}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $3$ |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{4850942225453}{380161499836635}a^{15}-\frac{4466517770369}{304129199869308}a^{14}+\frac{2294183872529}{152064599934654}a^{13}-\frac{111399534975739}{506881999782180}a^{12}+\frac{335080808052173}{253440999891090}a^{11}-\frac{458604053419813}{168960666594060}a^{10}+\frac{450151481132003}{126720499945545}a^{9}+\frac{510669651148279}{168960666594060}a^{8}+\frac{83379143282956}{126720499945545}a^{7}+\frac{64\cdots 17}{15\cdots 40}a^{6}+\frac{968391227679211}{69120272697570}a^{5}+\frac{13\cdots 41}{15\cdots 40}a^{4}+\frac{28\cdots 91}{253440999891090}a^{3}+\frac{989706581439599}{101376399956436}a^{2}+\frac{77007757542887}{14080055549505}a+\frac{67610178231197}{33792133318812}$, $\frac{1844675850569}{253440999891090}a^{15}+\frac{150094779533}{11264044439604}a^{14}-\frac{178093137586}{25344099989109}a^{13}+\frac{19515348490211}{168960666594060}a^{12}-\frac{3877692577779}{4693351849835}a^{11}+\frac{326522584405741}{168960666594060}a^{10}-\frac{61946585915083}{28160111099010}a^{9}-\frac{437115263281963}{168960666594060}a^{8}+\frac{37150809641113}{9386703699670}a^{7}-\frac{832459129249433}{506881999782180}a^{6}-\frac{33031151489669}{3840015149865}a^{5}+\frac{726750289915511}{506881999782180}a^{4}+\frac{13405376792287}{4693351849835}a^{3}-\frac{119943355925237}{33792133318812}a^{2}-\frac{12495477406311}{9386703699670}a-\frac{11683493260379}{11264044439604}$, $\frac{165485557844}{380161499836635}a^{15}+\frac{942081232013}{304129199869308}a^{14}-\frac{746404642018}{76032299967327}a^{13}+\frac{8058184487797}{506881999782180}a^{12}-\frac{11306974164142}{126720499945545}a^{11}+\frac{8643218315751}{18773407399340}a^{10}-\frac{162878281788929}{126720499945545}a^{9}+\frac{278828113799153}{168960666594060}a^{8}-\frac{15107024382973}{126720499945545}a^{7}-\frac{51\cdots 41}{15\cdots 40}a^{6}+\frac{58666961217301}{34560136348785}a^{5}+\frac{450959904755357}{15\cdots 40}a^{4}-\frac{519050422857599}{126720499945545}a^{3}-\frac{410228226693941}{101376399956436}a^{2}-\frac{10531018605022}{4693351849835}a-\frac{9026572605821}{33792133318812}$, $\frac{28216092850813}{15\cdots 40}a^{15}+\frac{583989268927}{76032299967327}a^{14}+\frac{688268164717}{304129199869308}a^{13}+\frac{36528153510974}{126720499945545}a^{12}-\frac{845063549306489}{506881999782180}a^{11}+\frac{100154155721813}{42240166648515}a^{10}-\frac{650009801745913}{506881999782180}a^{9}-\frac{897272999234303}{84480333297030}a^{8}-\frac{133719201701951}{506881999782180}a^{7}-\frac{56\cdots 69}{760322999673270}a^{6}-\frac{34\cdots 53}{138240545395140}a^{5}-\frac{18\cdots 07}{760322999673270}a^{4}-\frac{97\cdots 93}{506881999782180}a^{3}-\frac{13\cdots 11}{50688199978218}a^{2}-\frac{695078945029217}{56320222198020}a-\frac{56619499304083}{8448033329703}$, $\frac{83704901459}{506881999782180}a^{15}+\frac{322884004589}{33792133318812}a^{14}+\frac{523661906705}{101376399956436}a^{13}-\frac{1467858263153}{168960666594060}a^{12}-\frac{24944458804033}{168960666594060}a^{11}+\frac{118642600280497}{168960666594060}a^{10}-\frac{63135357871961}{168960666594060}a^{9}-\frac{52634710355891}{168960666594060}a^{8}+\frac{295576787774711}{56320222198020}a^{7}+\frac{33\cdots 79}{506881999782180}a^{6}+\frac{15348540522091}{5120020199820}a^{5}+\frac{52\cdots 17}{506881999782180}a^{4}+\frac{34\cdots 19}{168960666594060}a^{3}+\frac{591540406800457}{33792133318812}a^{2}+\frac{483669930613333}{56320222198020}a+\frac{25045247871511}{11264044439604}$, $\frac{119253275606}{126720499945545}a^{15}-\frac{104632804883}{25344099989109}a^{14}+\frac{478102502263}{101376399956436}a^{13}-\frac{3099813751183}{168960666594060}a^{12}+\frac{6119587335863}{42240166648515}a^{11}-\frac{21408853226402}{42240166648515}a^{10}+\frac{16556297385091}{18773407399340}a^{9}-\frac{69133839252791}{168960666594060}a^{8}-\frac{118737933652991}{84480333297030}a^{7}+\frac{481634527715237}{253440999891090}a^{6}-\frac{80785871446351}{46080181798380}a^{5}-\frac{616198028668553}{506881999782180}a^{4}-\frac{20217651556261}{28160111099010}a^{3}-\frac{31437909654539}{16896066659406}a^{2}-\frac{44479354870327}{56320222198020}a-\frac{8974011142969}{11264044439604}$, $\frac{132309015447359}{760322999673270}a^{15}+\frac{9806848050286}{76032299967327}a^{14}-\frac{23171768701505}{304129199869308}a^{13}+\frac{14\cdots 61}{506881999782180}a^{12}-\frac{42\cdots 57}{253440999891090}a^{11}+\frac{24\cdots 11}{84480333297030}a^{10}-\frac{14\cdots 93}{506881999782180}a^{9}-\frac{12\cdots 51}{168960666594060}a^{8}-\frac{363305770373369}{126720499945545}a^{7}-\frac{49\cdots 29}{760322999673270}a^{6}-\frac{29\cdots 83}{138240545395140}a^{5}-\frac{27\cdots 09}{15\cdots 40}a^{4}-\frac{21\cdots 62}{126720499945545}a^{3}-\frac{49\cdots 42}{25344099989109}a^{2}-\frac{18\cdots 19}{18773407399340}a-\frac{15\cdots 47}{33792133318812}$
|
| |
Regulator: | \( 2105433.3824113007 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 2105433.3824113007 \cdot 2}{2\cdot\sqrt{4357047163233901253492736}}\cr\approx \mathstrut & 2.45010288057013 \end{aligned}\] (assuming GRH)
Galois group
$C_2^6:D_4$ (as 16T969):
A solvable group of order 512 |
The 44 conjugacy class representatives for $C_2^6:D_4$ |
Character table for $C_2^6:D_4$ |
Intermediate fields
\(\Q(\sqrt{-2}) \), 4.0.6144.1, 8.0.260919263232.15, 8.0.28991029248.10, 8.0.21743271936.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{4}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.66j1.10 | $x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{5} + 16 x^{3} + 2$ | $16$ | $1$ | $66$ | 16T969 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$$ |
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.2.4.6a1.2 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 64 x + 19$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |