Normalized defining polynomial
\( x^{16} + 44x^{12} + 192x^{10} + 390x^{8} + 192x^{6} + 44x^{4} + 1 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(121029087867608368152576\)
\(\medspace = 2^{64}\cdot 3^{8}\)
|
| |
Root discriminant: | \(27.71\) |
| |
Galois root discriminant: | $2^{555/128}3^{3/4}\approx 46.035004279893066$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-2}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}+\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{4}a^{8}-\frac{1}{4}$, $\frac{1}{4}a^{9}-\frac{1}{4}a$, $\frac{1}{8}a^{10}-\frac{1}{8}a^{8}-\frac{1}{4}a^{6}-\frac{1}{4}a^{4}+\frac{1}{8}a^{2}+\frac{3}{8}$, $\frac{1}{8}a^{11}-\frac{1}{8}a^{9}-\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{1}{8}a^{3}+\frac{1}{4}a^{2}+\frac{1}{8}a+\frac{1}{4}$, $\frac{1}{312}a^{12}-\frac{2}{39}a^{10}-\frac{1}{24}a^{8}-\frac{1}{6}a^{6}-\frac{1}{24}a^{4}+\frac{35}{78}a^{2}+\frac{1}{312}$, $\frac{1}{624}a^{13}-\frac{1}{624}a^{12}-\frac{1}{39}a^{11}+\frac{1}{39}a^{10}+\frac{5}{48}a^{9}-\frac{5}{48}a^{8}-\frac{1}{12}a^{7}+\frac{1}{12}a^{6}+\frac{11}{48}a^{5}-\frac{11}{48}a^{4}-\frac{43}{156}a^{3}+\frac{43}{156}a^{2}+\frac{79}{624}a-\frac{79}{624}$, $\frac{1}{1872}a^{14}+\frac{1}{1872}a^{12}+\frac{3}{208}a^{10}+\frac{1}{48}a^{8}-\frac{7}{48}a^{6}-\frac{9}{208}a^{4}+\frac{197}{1872}a^{2}-\frac{919}{1872}$, $\frac{1}{1872}a^{15}+\frac{1}{1872}a^{13}+\frac{3}{208}a^{11}+\frac{1}{48}a^{9}+\frac{5}{48}a^{7}-\frac{1}{4}a^{6}+\frac{43}{208}a^{5}-\frac{1}{4}a^{4}-\frac{271}{1872}a^{3}+\frac{1}{4}a^{2}+\frac{485}{1872}a+\frac{1}{4}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$a$, $\frac{23}{468}a^{15}-\frac{133}{936}a^{13}-\frac{163}{78}a^{11}-\frac{377}{24}a^{9}-\frac{173}{4}a^{7}-\frac{16165}{312}a^{5}-\frac{89}{18}a^{3}+\frac{67}{936}a$, $\frac{317}{1872}a^{15}-\frac{10}{117}a^{14}-\frac{409}{1872}a^{13}-\frac{35}{936}a^{12}+\frac{4697}{624}a^{11}-\frac{385}{104}a^{10}+\frac{1099}{48}a^{9}-\frac{217}{12}a^{8}+\frac{439}{16}a^{7}-\frac{455}{12}a^{6}-\frac{23821}{624}a^{5}-\frac{2179}{104}a^{4}-\frac{11579}{1872}a^{3}+\frac{6803}{936}a^{2}+\frac{2323}{1872}a-\frac{7}{234}$, $\frac{5}{1872}a^{15}-\frac{5}{1872}a^{14}+\frac{61}{1872}a^{13}+\frac{61}{1872}a^{12}-\frac{85}{624}a^{11}-\frac{85}{624}a^{10}+\frac{15}{16}a^{9}+\frac{15}{16}a^{8}+\frac{211}{48}a^{7}+\frac{211}{48}a^{6}+\frac{5777}{624}a^{5}+\frac{5777}{624}a^{4}+\frac{347}{144}a^{3}+\frac{347}{144}a^{2}+\frac{2789}{1872}a+\frac{917}{1872}$, $\frac{5}{1872}a^{15}+\frac{5}{1872}a^{14}+\frac{61}{1872}a^{13}-\frac{61}{1872}a^{12}-\frac{85}{624}a^{11}+\frac{85}{624}a^{10}+\frac{15}{16}a^{9}-\frac{15}{16}a^{8}+\frac{211}{48}a^{7}-\frac{211}{48}a^{6}+\frac{5777}{624}a^{5}-\frac{5777}{624}a^{4}+\frac{347}{144}a^{3}-\frac{347}{144}a^{2}+\frac{2789}{1872}a-\frac{917}{1872}$, $\frac{757}{1872}a^{15}+\frac{35}{624}a^{14}-\frac{5}{144}a^{13}-\frac{9}{208}a^{12}+\frac{11119}{624}a^{11}+\frac{119}{48}a^{10}+\frac{3653}{48}a^{9}+\frac{425}{48}a^{8}+\frac{2435}{16}a^{7}+\frac{677}{48}a^{6}+\frac{42871}{624}a^{5}-\frac{2809}{624}a^{4}+\frac{36623}{1872}a^{3}-\frac{309}{208}a^{2}-\frac{4567}{1872}a+\frac{59}{48}$, $\frac{277}{936}a^{15}-\frac{1295}{624}a^{14}+\frac{277}{234}a^{13}-\frac{93}{208}a^{12}+\frac{2053}{156}a^{11}-\frac{56993}{624}a^{10}+\frac{871}{8}a^{9}-\frac{20069}{48}a^{8}+\frac{8371}{24}a^{7}-\frac{43013}{48}a^{6}+\frac{84823}{156}a^{5}-\frac{359153}{624}a^{4}+\frac{33751}{117}a^{3}-\frac{37573}{208}a^{2}+\frac{62519}{936}a-\frac{9143}{624}$
|
| |
Regulator: | \( 321868.8829649332 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 321868.8829649332 \cdot 1}{2\cdot\sqrt{121029087867608368152576}}\cr\approx \mathstrut & 1.12368106809691 \end{aligned}\]
Galois group
$C_2^6:D_4$ (as 16T969):
A solvable group of order 512 |
The 44 conjugacy class representatives for $C_2^6:D_4$ |
Character table for $C_2^6:D_4$ |
Intermediate fields
\(\Q(\sqrt{-2}) \), 4.0.3072.2, 8.0.14495514624.4, 8.0.14495514624.9, 8.0.5435817984.11 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.64l1.962 | $x^{16} + 20 x^{12} + 4 x^{8} + 8 x^{6} + 8 x^{4} + 16 x + 2$ | $16$ | $1$ | $64$ | 16T969 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$$ |
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
3.2.4.6a1.2 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 64 x + 19$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |