Normalized defining polynomial
\( x^{16} + 48x^{12} + 320x^{10} + 900x^{8} + 4608x^{6} + 11104x^{4} - 768x^{2} + 4356 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(4357047163233901253492736\)
\(\medspace = 2^{66}\cdot 3^{10}\)
|
| |
Root discriminant: | \(34.67\) |
| |
Galois root discriminant: | $2^{555/128}3^{3/4}\approx 46.035004279893066$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-2}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{16}a^{8}-\frac{1}{2}a^{5}+\frac{1}{8}$, $\frac{1}{16}a^{9}-\frac{1}{2}a^{6}+\frac{1}{8}a$, $\frac{1}{48}a^{10}+\frac{1}{48}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}+\frac{1}{3}a^{4}-\frac{7}{24}a^{2}+\frac{3}{8}$, $\frac{1}{48}a^{11}+\frac{1}{48}a^{9}-\frac{1}{2}a^{6}+\frac{1}{3}a^{5}-\frac{7}{24}a^{3}+\frac{3}{8}a$, $\frac{1}{48}a^{12}-\frac{1}{48}a^{8}+\frac{1}{3}a^{6}-\frac{1}{2}a^{5}+\frac{3}{8}a^{4}-\frac{1}{3}a^{2}-\frac{3}{8}$, $\frac{1}{48}a^{13}-\frac{1}{48}a^{9}+\frac{1}{3}a^{7}-\frac{1}{2}a^{6}+\frac{3}{8}a^{5}-\frac{1}{3}a^{3}-\frac{3}{8}a$, $\frac{1}{394628673744}a^{14}+\frac{684365305}{65771445624}a^{12}+\frac{129010991}{43847630416}a^{10}+\frac{9191603963}{394628673744}a^{8}-\frac{1}{2}a^{7}-\frac{32867568277}{65771445624}a^{6}-\frac{1}{2}a^{5}-\frac{16407031615}{32885722812}a^{4}-\frac{13713156241}{197314336872}a^{2}-\frac{746796247}{65771445624}$, $\frac{1}{4340915411184}a^{15}-\frac{15576603}{5480953802}a^{13}+\frac{1563754937}{723485901864}a^{11}-\frac{89465564473}{4340915411184}a^{9}+\frac{317913475051}{723485901864}a^{7}-\frac{1}{2}a^{6}+\frac{5712312693}{30145245911}a^{5}+\frac{424768533787}{1085228852796}a^{3}-\frac{33632519059}{723485901864}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{2955737}{482323934576}a^{15}-\frac{20640265}{394628673744}a^{14}-\frac{1338275}{65771445624}a^{13}+\frac{261921}{21923815208}a^{12}+\frac{475370405}{1446971803728}a^{11}-\frac{364811855}{131542891248}a^{10}+\frac{326470081}{361742950932}a^{9}-\frac{3416691757}{197314336872}a^{8}+\frac{2475953831}{723485901864}a^{7}-\frac{3525724243}{65771445624}a^{6}-\frac{6915519097}{361742950932}a^{5}-\frac{7727492161}{32885722812}a^{4}-\frac{100071686179}{723485901864}a^{3}-\frac{110284027229}{197314336872}a^{2}-\frac{29262087073}{60290491822}a-\frac{8339378023}{32885722812}$, $\frac{20351763}{120580983644}a^{15}-\frac{386385371}{394628673744}a^{14}-\frac{63564103}{65771445624}a^{13}-\frac{10841903}{21923815208}a^{12}-\frac{11510999831}{1446971803728}a^{11}-\frac{6141959225}{131542891248}a^{10}-\frac{36509339491}{361742950932}a^{9}-\frac{66597465311}{197314336872}a^{8}-\frac{40713183688}{90435737733}a^{7}-\frac{67255969865}{65771445624}a^{6}-\frac{591913877249}{361742950932}a^{5}-\frac{53502863135}{10961907604}a^{4}-\frac{4477296124655}{723485901864}a^{3}-\frac{2538214315099}{197314336872}a^{2}-\frac{577660903757}{60290491822}a-\frac{115694982629}{32885722812}$, $\frac{18685187}{1446971803728}a^{15}-\frac{5705999}{32885722812}a^{14}-\frac{1782347}{8221430703}a^{13}+\frac{4577235}{5480953802}a^{12}-\frac{69602315}{180871475466}a^{11}-\frac{300610135}{32885722812}a^{10}-\frac{12578459885}{723485901864}a^{9}-\frac{115934081}{8221430703}a^{8}-\frac{35875517003}{723485901864}a^{7}+\frac{268302335}{5480953802}a^{6}-\frac{32670841453}{90435737733}a^{5}-\frac{1822020322}{8221430703}a^{4}-\frac{75323620079}{90435737733}a^{3}+\frac{4600431047}{5480953802}a^{2}-\frac{52704231687}{120580983644}a-\frac{481920133}{2740476901}$, $\frac{18685187}{1446971803728}a^{15}-\frac{5705999}{32885722812}a^{14}+\frac{1782347}{8221430703}a^{13}+\frac{4577235}{5480953802}a^{12}+\frac{69602315}{180871475466}a^{11}-\frac{300610135}{32885722812}a^{10}+\frac{12578459885}{723485901864}a^{9}-\frac{115934081}{8221430703}a^{8}+\frac{35875517003}{723485901864}a^{7}+\frac{268302335}{5480953802}a^{6}+\frac{32670841453}{90435737733}a^{5}-\frac{1822020322}{8221430703}a^{4}+\frac{75323620079}{90435737733}a^{3}+\frac{4600431047}{5480953802}a^{2}+\frac{52704231687}{120580983644}a-\frac{481920133}{2740476901}$, $\frac{37979189}{4340915411184}a^{15}-\frac{5957417}{131542891248}a^{14}-\frac{696097}{5480953802}a^{13}+\frac{12138991}{65771445624}a^{12}+\frac{269814965}{361742950932}a^{11}-\frac{129392985}{43847630416}a^{10}-\frac{4972936379}{1085228852796}a^{9}-\frac{99561433}{21923815208}a^{8}-\frac{9472319485}{723485901864}a^{7}-\frac{903137489}{65771445624}a^{6}-\frac{925279713}{30145245911}a^{5}-\frac{2741144759}{10961907604}a^{4}-\frac{316006248821}{542614426398}a^{3}+\frac{3456528997}{65771445624}a^{2}+\frac{43998586759}{180871475466}a+\frac{3491250235}{10961907604}$, $\frac{227764127}{723485901864}a^{15}-\frac{64083583}{394628673744}a^{14}-\frac{12345859}{131542891248}a^{13}-\frac{11729149}{65771445624}a^{12}-\frac{1400894147}{90435737733}a^{11}-\frac{458032271}{65771445624}a^{10}-\frac{74461569553}{723485901864}a^{9}-\frac{13020389881}{197314336872}a^{8}-\frac{119639444147}{361742950932}a^{7}-\frac{9434578781}{65771445624}a^{6}-\frac{1132448936545}{723485901864}a^{5}-\frac{10393531639}{10961907604}a^{4}-\frac{323971339213}{90435737733}a^{3}-\frac{266730073897}{98657168436}a^{2}-\frac{168236301771}{120580983644}a+\frac{14153222777}{32885722812}$, $\frac{37979189}{4340915411184}a^{15}-\frac{5957417}{131542891248}a^{14}+\frac{696097}{5480953802}a^{13}+\frac{12138991}{65771445624}a^{12}-\frac{269814965}{361742950932}a^{11}-\frac{129392985}{43847630416}a^{10}+\frac{4972936379}{1085228852796}a^{9}-\frac{99561433}{21923815208}a^{8}+\frac{9472319485}{723485901864}a^{7}-\frac{903137489}{65771445624}a^{6}+\frac{925279713}{30145245911}a^{5}-\frac{2741144759}{10961907604}a^{4}+\frac{316006248821}{542614426398}a^{3}+\frac{3456528997}{65771445624}a^{2}-\frac{43998586759}{180871475466}a+\frac{3491250235}{10961907604}$
|
| |
Regulator: | \( 1208532.6272826104 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 1208532.6272826104 \cdot 2}{2\cdot\sqrt{4357047163233901253492736}}\cr\approx \mathstrut & 1.40637518911993 \end{aligned}\] (assuming GRH)
Galois group
$C_2^6:D_4$ (as 16T969):
A solvable group of order 512 |
The 44 conjugacy class representatives for $C_2^6:D_4$ |
Character table for $C_2^6:D_4$ |
Intermediate fields
\(\Q(\sqrt{-2}) \), 4.0.6144.1, 8.0.28991029248.2, 8.0.260919263232.14, 8.0.21743271936.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.66j1.125 | $x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{3} + 2$ | $16$ | $1$ | $66$ | 16T969 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$$ |
\(3\)
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
3.2.4.6a1.2 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 64 x + 19$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |