Normalized defining polynomial
\( x^{16} + 8 x^{14} + 32 x^{12} - 16 x^{10} - 96 x^{9} - 256 x^{8} - 768 x^{7} + 128 x^{6} + 1152 x^{5} + \cdots + 648 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(484116351470433472610304\)
\(\medspace = 2^{66}\cdot 3^{8}\)
|
| |
Root discriminant: | \(30.22\) |
| |
Galois root discriminant: | $2^{555/128}3^{3/4}\approx 46.035004279893066$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-2}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}$, $\frac{1}{2}a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{2}a^{9}$, $\frac{1}{2}a^{10}$, $\frac{1}{4}a^{11}$, $\frac{1}{4}a^{12}$, $\frac{1}{12}a^{13}+\frac{1}{12}a^{12}+\frac{1}{6}a^{9}+\frac{1}{6}a^{8}-\frac{1}{6}a^{7}-\frac{1}{6}a^{6}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}$, $\frac{1}{12}a^{14}-\frac{1}{12}a^{12}+\frac{1}{6}a^{10}+\frac{1}{6}a^{8}+\frac{1}{6}a^{6}-\frac{1}{3}a^{4}+\frac{1}{3}a^{2}$, $\frac{1}{16\cdots 84}a^{15}-\frac{33\cdots 85}{54\cdots 28}a^{14}-\frac{92\cdots 72}{41\cdots 21}a^{13}-\frac{32\cdots 25}{54\cdots 28}a^{12}-\frac{33\cdots 13}{41\cdots 21}a^{11}-\frac{20\cdots 74}{13\cdots 07}a^{10}-\frac{39\cdots 53}{82\cdots 42}a^{9}-\frac{15\cdots 53}{13\cdots 07}a^{8}-\frac{82\cdots 01}{82\cdots 42}a^{7}-\frac{26\cdots 35}{27\cdots 14}a^{6}-\frac{11\cdots 05}{41\cdots 21}a^{5}-\frac{57\cdots 28}{13\cdots 07}a^{4}+\frac{59\cdots 15}{41\cdots 21}a^{3}+\frac{15\cdots 69}{45\cdots 69}a^{2}+\frac{42\cdots 02}{13\cdots 07}a-\frac{12\cdots 99}{45\cdots 69}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $3$ |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{41\cdots 55}{16\cdots 84}a^{15}-\frac{36\cdots 99}{27\cdots 14}a^{14}-\frac{28\cdots 09}{16\cdots 84}a^{13}-\frac{13\cdots 33}{91\cdots 38}a^{12}-\frac{22\cdots 90}{41\cdots 21}a^{11}-\frac{22\cdots 65}{27\cdots 14}a^{10}+\frac{13\cdots 39}{82\cdots 42}a^{9}+\frac{80\cdots 89}{91\cdots 38}a^{8}+\frac{34\cdots 05}{41\cdots 21}a^{7}+\frac{25\cdots 67}{13\cdots 07}a^{6}+\frac{13\cdots 00}{41\cdots 21}a^{5}-\frac{66\cdots 77}{13\cdots 07}a^{4}+\frac{84\cdots 86}{41\cdots 21}a^{3}-\frac{24\cdots 57}{13\cdots 07}a^{2}-\frac{18\cdots 04}{13\cdots 07}a-\frac{29\cdots 35}{45\cdots 69}$, $\frac{59\cdots 63}{16\cdots 84}a^{15}+\frac{58\cdots 59}{27\cdots 14}a^{14}-\frac{49\cdots 17}{16\cdots 84}a^{13}+\frac{24\cdots 84}{13\cdots 07}a^{12}-\frac{52\cdots 82}{41\cdots 21}a^{11}+\frac{10\cdots 23}{13\cdots 07}a^{10}+\frac{11\cdots 79}{82\cdots 42}a^{9}+\frac{46\cdots 77}{13\cdots 07}a^{8}+\frac{59\cdots 65}{82\cdots 42}a^{7}+\frac{10\cdots 03}{45\cdots 69}a^{6}-\frac{76\cdots 92}{41\cdots 21}a^{5}-\frac{42\cdots 06}{13\cdots 07}a^{4}+\frac{10\cdots 47}{41\cdots 21}a^{3}-\frac{69\cdots 44}{13\cdots 07}a^{2}-\frac{14\cdots 46}{13\cdots 07}a-\frac{18\cdots 05}{45\cdots 69}$, $\frac{16\cdots 09}{16\cdots 84}a^{15}-\frac{55\cdots 15}{54\cdots 28}a^{14}+\frac{14\cdots 47}{16\cdots 84}a^{13}-\frac{81\cdots 85}{91\cdots 38}a^{12}+\frac{32\cdots 79}{82\cdots 42}a^{11}-\frac{53\cdots 79}{13\cdots 07}a^{10}+\frac{14\cdots 25}{82\cdots 42}a^{9}-\frac{48\cdots 95}{45\cdots 69}a^{8}-\frac{12\cdots 03}{82\cdots 42}a^{7}-\frac{80\cdots 90}{13\cdots 07}a^{6}+\frac{29\cdots 19}{41\cdots 21}a^{5}+\frac{70\cdots 98}{13\cdots 07}a^{4}-\frac{34\cdots 91}{41\cdots 21}a^{3}+\frac{24\cdots 48}{13\cdots 07}a^{2}+\frac{30\cdots 42}{13\cdots 07}a+\frac{12\cdots 01}{45\cdots 69}$, $\frac{32\cdots 55}{45\cdots 69}a^{15}+\frac{23\cdots 03}{54\cdots 28}a^{14}-\frac{10\cdots 55}{18\cdots 76}a^{13}+\frac{99\cdots 09}{27\cdots 14}a^{12}-\frac{11\cdots 85}{45\cdots 69}a^{11}+\frac{20\cdots 74}{13\cdots 07}a^{10}+\frac{16\cdots 99}{91\cdots 38}a^{9}+\frac{91\cdots 41}{13\cdots 07}a^{8}+\frac{12\cdots 09}{91\cdots 38}a^{7}+\frac{62\cdots 66}{13\cdots 07}a^{6}-\frac{16\cdots 71}{45\cdots 69}a^{5}-\frac{80\cdots 66}{13\cdots 07}a^{4}+\frac{23\cdots 80}{45\cdots 69}a^{3}-\frac{13\cdots 30}{13\cdots 07}a^{2}-\frac{95\cdots 78}{45\cdots 69}a-\frac{33\cdots 77}{45\cdots 69}$, $\frac{12\cdots 89}{82\cdots 42}a^{15}+\frac{49\cdots 23}{54\cdots 28}a^{14}-\frac{10\cdots 41}{82\cdots 42}a^{13}+\frac{34\cdots 87}{45\cdots 69}a^{12}-\frac{44\cdots 31}{82\cdots 42}a^{11}+\frac{86\cdots 87}{27\cdots 14}a^{10}+\frac{25\cdots 25}{41\cdots 21}a^{9}+\frac{13\cdots 33}{91\cdots 38}a^{8}+\frac{12\cdots 02}{41\cdots 21}a^{7}+\frac{13\cdots 79}{13\cdots 07}a^{6}-\frac{32\cdots 49}{41\cdots 21}a^{5}-\frac{17\cdots 40}{13\cdots 07}a^{4}+\frac{45\cdots 46}{41\cdots 21}a^{3}-\frac{29\cdots 24}{13\cdots 07}a^{2}-\frac{63\cdots 40}{13\cdots 07}a-\frac{77\cdots 73}{45\cdots 69}$, $\frac{39\cdots 35}{82\cdots 42}a^{15}+\frac{14\cdots 77}{54\cdots 28}a^{14}-\frac{32\cdots 35}{82\cdots 42}a^{13}+\frac{10\cdots 88}{45\cdots 69}a^{12}-\frac{13\cdots 41}{82\cdots 42}a^{11}+\frac{25\cdots 93}{27\cdots 14}a^{10}+\frac{10\cdots 03}{41\cdots 21}a^{9}+\frac{40\cdots 55}{91\cdots 38}a^{8}+\frac{39\cdots 30}{41\cdots 21}a^{7}+\frac{42\cdots 97}{13\cdots 07}a^{6}-\frac{96\cdots 03}{41\cdots 21}a^{5}-\frac{57\cdots 08}{13\cdots 07}a^{4}+\frac{14\cdots 18}{41\cdots 21}a^{3}-\frac{87\cdots 04}{13\cdots 07}a^{2}-\frac{20\cdots 68}{13\cdots 07}a-\frac{25\cdots 97}{45\cdots 69}$, $\frac{25\cdots 48}{45\cdots 69}a^{15}-\frac{15\cdots 91}{54\cdots 28}a^{14}+\frac{42\cdots 09}{91\cdots 38}a^{13}-\frac{64\cdots 53}{27\cdots 14}a^{12}+\frac{17\cdots 45}{91\cdots 38}a^{11}-\frac{26\cdots 41}{27\cdots 14}a^{10}-\frac{17\cdots 23}{45\cdots 69}a^{9}-\frac{70\cdots 32}{13\cdots 07}a^{8}-\frac{53\cdots 08}{45\cdots 69}a^{7}-\frac{50\cdots 67}{13\cdots 07}a^{6}+\frac{11\cdots 37}{45\cdots 69}a^{5}+\frac{70\cdots 59}{13\cdots 07}a^{4}-\frac{17\cdots 22}{45\cdots 69}a^{3}+\frac{10\cdots 96}{13\cdots 07}a^{2}+\frac{81\cdots 58}{45\cdots 69}a+\frac{31\cdots 09}{45\cdots 69}$
|
| |
Regulator: | \( 3447328.1967007415 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 3447328.1967007415 \cdot 1}{2\cdot\sqrt{484116351470433472610304}}\cr\approx \mathstrut & 6.01750842527284 \end{aligned}\] (assuming GRH)
Galois group
$C_2^6:D_4$ (as 16T969):
A solvable group of order 512 |
The 44 conjugacy class representatives for $C_2^6:D_4$ |
Character table for $C_2^6:D_4$ |
Intermediate fields
\(\Q(\sqrt{-2}) \), 4.0.6144.1, 8.0.28991029248.5, 8.0.28991029248.10, 8.0.21743271936.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.66j1.126 | $x^{16} + 8 x^{14} + 24 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{3} + 2$ | $16$ | $1$ | $66$ | 16T969 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$$ |
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.2.4.6a1.2 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 64 x + 19$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |