/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^16 + 8*x^14 - 48*x^11 - 16*x^10 - 192*x^9 + 340*x^8 - 96*x^7 + 912*x^6 - 192*x^5 + 624*x^4 - 288*x^3 + 576*x^2 + 108, 16, 969, [0, 8], 4357047163233901253492736, [2, 3], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, 1/2*a^8, 1/4*a^9 - 1/2*a^7 - 1/2*a^5 - 1/2*a, 1/12*a^10 - 1/12*a^9 + 1/6*a^8 + 1/6*a^7 + 1/6*a^6 + 1/6*a^5 + 1/3*a^4 - 1/2*a^2 - 1/2*a, 1/12*a^11 + 1/12*a^9 - 1/6*a^8 + 1/3*a^7 + 1/3*a^6 - 1/2*a^5 + 1/3*a^4 - 1/2*a^3 - 1/2*a, 1/36*a^12 - 1/36*a^11 - 1/36*a^10 - 1/36*a^9 - 1/9*a^8 - 1/9*a^7 - 7/18*a^6 - 1/2*a^5 + 1/6*a^4 - 1/6*a^3 - 1/6*a^2 - 1/2*a, 1/36*a^13 + 1/36*a^11 + 1/36*a^10 + 1/9*a^9 - 2/9*a^8 - 1/2*a^7 - 7/18*a^6 - 1/6*a^5 - 1/3*a^4 + 1/6*a^3 - 1/6*a^2, 1/108*a^14 - 1/108*a^12 + 1/36*a^10 + 1/9*a^9 + 13/54*a^8 + 4/9*a^7 + 10/27*a^6 + 1/18*a^4 - 1/9*a^3 + 5/18*a^2 - 1/3*a - 1/3, 1/1006799095969452*a^15 - 161215970833/335599698656484*a^14 + 12348173280797/1006799095969452*a^13 + 3930435903293/335599698656484*a^12 - 59201096543/27966641554707*a^11 + 142521241926/9322213851569*a^10 - 53710121629919/503399547984726*a^9 - 16250357805769/167799849328242*a^8 + 81403546311689/503399547984726*a^7 - 15026081307263/55933283109414*a^6 + 14747109927895/167799849328242*a^5 + 79619984341627/167799849328242*a^4 + 14458760321764/83899924664121*a^3 + 13874381282651/27966641554707*a^2 - 13292696890648/27966641554707*a + 4222617877035/9322213851569], 0, 2, [2], 1, [ (1898440263709)/(503399547984726)*a^(15) + (4340444448521)/(1006799095969452)*a^(14) + (16785404308205)/(503399547984726)*a^(13) + (19771343418269)/(503399547984726)*a^(12) + (4222690784801)/(167799849328242)*a^(11) - (4302121120579)/(27966641554707)*a^(10) - (67465775844005)/(251699773992363)*a^(9) - (254172532245986)/(251699773992363)*a^(8) + (42642688606718)/(251699773992363)*a^(7) + (281551319735791)/(503399547984726)*a^(6) + (309106602763285)/(83899924664121)*a^(5) + (372176375357168)/(83899924664121)*a^(4) + (48741019787261)/(9322213851569)*a^(3) + (246524313995261)/(83899924664121)*a^(2) + (35465281178576)/(27966641554707)*a + (6568717369687)/(27966641554707) , (4644199783453)/(1006799095969452)*a^(15) + (1170383457983)/(111866566218828)*a^(14) + (7406572356254)/(251699773992363)*a^(13) + (20777727035389)/(335599698656484)*a^(12) - (10821653726891)/(335599698656484)*a^(11) - (31022513798795)/(83899924664121)*a^(10) - (213836125319993)/(503399547984726)*a^(9) - (83560130820055)/(167799849328242)*a^(8) + (75800683178065)/(251699773992363)*a^(7) + (574285615566067)/(167799849328242)*a^(6) + (333185835464336)/(83899924664121)*a^(5) - (119735671541897)/(167799849328242)*a^(4) + (101330045538437)/(167799849328242)*a^(3) + (32525270320321)/(27966641554707)*a^(2) + (87961382815736)/(27966641554707)*a - (8439159197481)/(9322213851569) , (1940587358065)/(1006799095969452)*a^(15) - (971936599583)/(503399547984726)*a^(14) + (8400268126405)/(503399547984726)*a^(13) - (14662694620337)/(1006799095969452)*a^(12) + (3043731831793)/(335599698656484)*a^(11) - (2405232626252)/(27966641554707)*a^(10) + (13384042265018)/(251699773992363)*a^(9) - (100143954266000)/(251699773992363)*a^(8) + (240817979538157)/(251699773992363)*a^(7) - (266717119914337)/(251699773992363)*a^(6) + (190331644145786)/(83899924664121)*a^(5) - (98491240930375)/(55933283109414)*a^(4) + (390903958809637)/(167799849328242)*a^(3) - (100969201950520)/(83899924664121)*a^(2) + (13699453327663)/(9322213851569)*a - (28951178272574)/(27966641554707) , -(20017237767637)/(1006799095969452)*a^(15) - (7569524985739)/(1006799095969452)*a^(14) - (75860648626123)/(503399547984726)*a^(13) - (54534983575547)/(1006799095969452)*a^(12) + (2430501410723)/(37288855406276)*a^(11) + (169782463803307)/(167799849328242)*a^(10) + (171560674418221)/(251699773992363)*a^(9) + (1806662914733339)/(503399547984726)*a^(8) - (1419207040130209)/(251699773992363)*a^(7) - (1213349349584915)/(503399547984726)*a^(6) - (1372501058884703)/(83899924664121)*a^(5) - (352175860211603)/(167799849328242)*a^(4) - (293979299080657)/(55933283109414)*a^(3) + (525928502825066)/(83899924664121)*a^(2) + (11986786932047)/(27966641554707)*a + (40125281425717)/(27966641554707) , (2531488439666)/(251699773992363)*a^(15) + (621297110523)/(37288855406276)*a^(14) + (85238183915713)/(1006799095969452)*a^(13) + (42363901251523)/(335599698656484)*a^(12) + (7762790415925)/(335599698656484)*a^(11) - (92123329209643)/(167799849328242)*a^(10) - (526709137259017)/(503399547984726)*a^(9) - (205893123176174)/(83899924664121)*a^(8) + (250822718464447)/(503399547984726)*a^(7) + (780159892826117)/(167799849328242)*a^(6) + (1869806061303059)/(167799849328242)*a^(5) + (2109404546820917)/(167799849328242)*a^(4) + (807387489055855)/(167799849328242)*a^(3) - (54231294533626)/(27966641554707)*a^(2) - (166894461330599)/(27966641554707)*a + (260674834756)/(9322213851569) , (2293674624773)/(503399547984726)*a^(15) - (340607067245)/(335599698656484)*a^(14) + (8225473972556)/(251699773992363)*a^(13) - (111789509777)/(27966641554707)*a^(12) - (5052687785369)/(167799849328242)*a^(11) - (31726100295083)/(167799849328242)*a^(10) - (11765828590049)/(503399547984726)*a^(9) - (59090927194460)/(83899924664121)*a^(8) + (401908122470254)/(251699773992363)*a^(7) - (26462367482659)/(167799849328242)*a^(6) + (187885721816291)/(83899924664121)*a^(5) - (24026625547183)/(83899924664121)*a^(4) - (7859553030029)/(83899924664121)*a^(3) + (13117842501758)/(9322213851569)*a^(2) + (2024316019619)/(27966641554707)*a + (2958447187375)/(9322213851569) , -(5716029600415)/(503399547984726)*a^(15) + (1502789537299)/(335599698656484)*a^(14) - (23401443108472)/(251699773992363)*a^(13) + (1129465486706)/(27966641554707)*a^(12) - (1587336375953)/(167799849328242)*a^(11) + (95940933198457)/(167799849328242)*a^(10) + (10085483592799)/(503399547984726)*a^(9) + (180620482698481)/(83899924664121)*a^(8) - (1250647431029798)/(251699773992363)*a^(7) + (449399993929205)/(167799849328242)*a^(6) - (1009894747195909)/(83899924664121)*a^(5) + (553602265605239)/(83899924664121)*a^(4) - (544381703502077)/(83899924664121)*a^(3) + (73537196078170)/(9322213851569)*a^(2) - (180129246883165)/(27966641554707)*a + (28758995714823)/(9322213851569) ], 3476026.2329509286, [[x^2 + 2, 1], [x^4 - 4*x^2 + 6, 1], [x^8 + 12*x^4 - 16*x^2 + 12, 1], [x^8 + 12*x^6 + 66*x^4 + 180*x^2 + 243, 1], [x^8 - 4*x^6 + 18*x^4 - 12*x^2 + 9, 1]]]