L(s) = 1 | + 2·2-s + 3·4-s − 4·7-s + 4·8-s − 8·14-s + 5·16-s + 25-s − 12·28-s + 12·29-s + 6·32-s + 4·37-s − 8·43-s + 9·49-s + 2·50-s + 12·53-s − 16·56-s + 24·58-s + 7·64-s − 8·67-s + 8·74-s + 16·79-s − 16·86-s + 18·98-s + 3·100-s + 24·106-s + 24·107-s − 20·109-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/2·4-s − 1.51·7-s + 1.41·8-s − 2.13·14-s + 5/4·16-s + 1/5·25-s − 2.26·28-s + 2.22·29-s + 1.06·32-s + 0.657·37-s − 1.21·43-s + 9/7·49-s + 0.282·50-s + 1.64·53-s − 2.13·56-s + 3.15·58-s + 7/8·64-s − 0.977·67-s + 0.929·74-s + 1.80·79-s − 1.72·86-s + 1.81·98-s + 3/10·100-s + 2.33·106-s + 2.32·107-s − 1.91·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.913565526\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.913565526\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.644229019078172602684577487278, −8.145462184294923465930650647398, −7.51828953604385192982905489512, −6.97913667513999229030385049043, −6.73106470746564203527567325446, −6.11397905422548756742635703073, −6.03795573121967783311486434379, −5.26570153655431196939565550355, −4.75701556135232590446975582633, −4.32687879913691587957737883725, −3.63359445531324431774910445192, −3.21826656477469471981988966496, −2.74628747875934588873509462774, −2.10133345305515366205304847130, −0.879817280069523657260066044025,
0.879817280069523657260066044025, 2.10133345305515366205304847130, 2.74628747875934588873509462774, 3.21826656477469471981988966496, 3.63359445531324431774910445192, 4.32687879913691587957737883725, 4.75701556135232590446975582633, 5.26570153655431196939565550355, 6.03795573121967783311486434379, 6.11397905422548756742635703073, 6.73106470746564203527567325446, 6.97913667513999229030385049043, 7.51828953604385192982905489512, 8.145462184294923465930650647398, 8.644229019078172602684577487278