Invariants
This isogeny class is not simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$2304$ |
$8294400$ |
$22384947456$ |
$62271037440000$ |
$174858360988633344$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$42$ |
$2950$ |
$150354$ |
$7891918$ |
$418125882$ |
$22163867350$ |
$1174711866594$ |
$62259720942238$ |
$3299763736469322$ |
$174887469615379750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 90 curves (of which all are hyperelliptic):
- $y^2=14 x^6+37 x^5+47 x^4+7 x^3+38 x^2+6 x+20$
- $y^2=50 x^6+9 x^5+38 x^4+4 x^3+24 x^2+40 x+39$
- $y^2=30 x^6+23 x^5+40 x^4+45 x^3+40 x^2+23 x+30$
- $y^2=28 x^6+35 x^4+35 x^2+28$
- $y^2=26 x^6+x^5+16 x^4+x^3+16 x^2+x+26$
- $y^2=8 x^6+29 x^4+29 x^2+8$
- $y^2=39 x^6+25 x^5+9 x^4+26 x^3+49 x^2+12 x+9$
- $y^2=39 x^6+16 x^5+48 x^4+43 x^3+32 x^2+13 x+41$
- $y^2=31 x^6+25 x^5+38 x^4+33 x^3+43 x^2+17 x+19$
- $y^2=2 x^6+8 x^5+14 x^4+42 x^3+3 x^2+22 x+22$
- $y^2=50 x^6+30 x^5+49 x^4+x^3+16 x^2+3 x+33$
- $y^2=34 x^6+48 x^5+6 x^3+48 x+34$
- $y^2=24 x^6+32 x^5+13 x^4+44 x^3+29 x^2+41 x+29$
- $y^2=44 x^6+41 x^5+44 x^4+50 x^3+9 x^2+41 x+9$
- $y^2=35 x^6+26 x^5+6 x^4+50 x^3+6 x^2+26 x+35$
- $y^2=18 x^6+x^5+49 x^4+49 x^3+43 x^2+42 x+22$
- $y^2=51 x^6+45 x^5+x^4+32 x^3+6 x^2+27 x+32$
- $y^2=26 x^6+10 x^4+25 x^3+5 x^2+26 x+29$
- $y^2=50 x^6+31 x^5+41 x^4+45 x^3+46 x^2+19 x+52$
- $y^2=47 x^6+52 x^5+52 x^4+17 x^3+13 x^2+43 x+38$
- and 70 more
- $y^2=20 x^6+19 x^5+52 x^4+19 x^3+52 x^2+19 x+20$
- $y^2=45 x^6+48 x^4+48 x^2+45$
- $y^2=26 x^6+16 x^5+5 x^4+x^3+18 x^2+42 x+39$
- $y^2=48 x^6+17 x^5+7 x^4+27 x^3+25 x^2+7 x+2$
- $y^2=18 x^6+34 x^5+13 x^4+10 x^3+13 x^2+34 x+18$
- $y^2=34 x^6+20 x^5+34 x^4+37 x^3+34 x^2+20 x+34$
- $y^2=17 x^6+39 x^5+21 x^4+45 x^3+50 x^2+30 x+29$
- $y^2=30 x^6+45 x^5+31 x^4+26 x^3+12 x^2+2 x+33$
- $y^2=43 x^6+51 x^5+38 x^4+x^3+47 x^2+23 x+46$
- $y^2=35 x^6+34 x^5+35 x^4+42 x^3+34 x^2+14 x+14$
- $y^2=4 x^6+37 x^5+x^4+37 x^3+x^2+37 x+4$
- $y^2=10 x^6+30 x^5+52 x^4+20 x^3+52 x^2+30 x+10$
- $y^2=2 x^6+11 x^5+52 x^4+47 x^3+44 x^2+43 x+27$
- $y^2=47 x^6+44 x^5+24 x^4+17 x^3+24 x^2+44 x+47$
- $y^2=40 x^6+20 x^4+20 x^2+40$
- $y^2=27 x^6+32 x^4+32 x^2+27$
- $y^2=27 x^6+19 x^5+3 x^4+40 x^3+18 x^2+48 x+2$
- $y^2=10 x^5+34 x^4+29 x^3+34 x^2+10 x$
- $y^2=x^6+3 x^5+28 x^4+41 x^3+10 x^2+45 x+47$
- $y^2=14 x^6+9 x^5+9 x^4+38 x^3+36 x^2+10 x+6$
- $y^2=30 x^6+13 x^5+9 x^4+13 x^3+9 x^2+13 x+30$
- $y^2=23 x^6+9 x^5+3 x^4+35 x^3+45 x^2+11 x+33$
- $y^2=50 x^6+10 x^5+15 x^4+8 x^3+x^2+13 x+22$
- $y^2=28 x^6+27 x^5+23 x^4+51 x^3+8 x^2+21 x+15$
- $y^2=47 x^6+16 x^5+32 x^4+44 x^3+30 x^2+24 x+28$
- $y^2=29 x^6+52 x^5+27 x^4+15 x^3+34 x^2+40 x+37$
- $y^2=31 x^6+35 x^5+3 x^4+3 x^3+52 x^2+23 x+47$
- $y^2=22 x^6+51 x^5+5 x^4+31 x^3+5 x^2+51 x+22$
- $y^2=41 x^6+11 x^5+46 x^4+x^3+46 x^2+11 x+41$
- $y^2=33 x^6+16 x^5+39 x^4+8 x^3+39 x^2+16 x+33$
- $y^2=36 x^6+40 x^4+40 x^2+36$
- $y^2=49 x^6+17 x^5+10 x^4+47 x^3+47 x^2+18 x+25$
- $y^2=21 x^6+10 x^5+33 x^4+29 x^3+48 x^2+47 x+26$
- $y^2=20 x^6+8 x^5+22 x^4+48 x^3+30 x^2+14 x+14$
- $y^2=32 x^6+42 x^5+38 x^4+18 x^3+38 x^2+42 x+32$
- $y^2=30 x^6+49 x^5+6 x^4+6 x^2+49 x+30$
- $y^2=17 x^5+16 x^4+47 x^3+9 x^2+6 x$
- $y^2=13 x^6+31 x^5+24 x^4+3 x^3+24 x^2+31 x+13$
- $y^2=48 x^6+33 x^4+33 x^2+48$
- $y^2=32 x^6+20 x^5+11 x^4+35 x^3+47 x^2+48 x+14$
- $y^2=12 x^6+38 x^5+30 x^4+45 x^3+48 x^2+4 x+50$
- $y^2=23 x^6+34 x^5+52 x^4+51 x^3+28 x^2+50 x+35$
- $y^2=8 x^6+23 x^5+11 x^4+52 x^3+11 x^2+23 x+8$
- $y^2=5 x^6+21 x^5+38 x^4+4 x^3+30 x^2+49 x+46$
- $y^2=11 x^6+7 x^5+33 x^4+5 x^3+27 x^2+6 x+38$
- $y^2=13 x^6+47 x^5+33 x^4+47 x^3+33 x^2+47 x+13$
- $y^2=45 x^6+26 x^4+16 x^3+39 x^2+26$
- $y^2=22 x^6+17 x^5+38 x^4+27 x^3+38 x^2+17 x+22$
- $y^2=35 x^6+43 x^5+38 x^4+5 x^3+x^2+40 x+27$
- $y^2=25 x^6+39 x^5+15 x^4+3 x^3+15 x^2+39 x+25$
- $y^2=48 x^6+33 x^5+41 x^4+37 x^3+41 x^2+33 x+48$
- $y^2=44 x^6+2 x^5+16 x^4+16 x^3+9 x^2+35 x+29$
- $y^2=52 x^6+22 x^5+44 x^4+28 x^3+15 x^2+14 x+38$
- $y^2=49 x^6+28 x^4+28 x^2+49$
- $y^2=23 x^6+34 x^5+18 x^4+31 x^3+18 x^2+34 x+23$
- $y^2=14 x^6+37 x^5+31 x^4+24 x^3+31 x^2+37 x+14$
- $y^2=19 x^6+36 x^5+28 x^4+38 x^3+5 x^2+49 x+52$
- $y^2=33 x^6+10 x^4+10 x^2+33$
- $y^2=26 x^6+15 x^4+49 x^3+16 x^2+2$
- $y^2=40 x^6+45 x^5+37 x^4+x^3+37 x^2+45 x+40$
- $y^2=47 x^6+17 x^5+35 x^4+43 x^3+35 x^2+17 x+47$
- $y^2=46 x^6+2 x^5+17 x^4+16 x^3+15 x^2+32 x+29$
- $y^2=2 x^6+40 x^5+18 x^4+37 x^3+30 x^2+11 x+23$
- $y^2=38 x^6+45 x^5+44 x^4+40 x^3+17 x^2+31 x+47$
- $y^2=30 x^6+34 x^5+6 x^4+13 x^3+9 x^2+50 x+35$
- $y^2=31 x^6+45 x^5+49 x^4+10 x^3+49 x^2+45 x+31$
- $y^2=41 x^6+13 x^5+7 x^4+44 x^3+7 x^2+13 x+41$
- $y^2=3 x^6+5 x^5+29 x^4+34 x^3+16 x^2+14 x+5$
- $y^2=24 x^6+26 x^5+4 x^4+35 x^3+4 x^2+26 x+24$
- $y^2=6 x^6+10 x^5+35 x^4+45 x^3+35 x^2+10 x+6$
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$
Base change
This is a primitive isogeny class.
Twists