Properties

Label 2.53.am_fm
Base field $\F_{53}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{53}$
Dimension:  $2$
L-polynomial:  $( 1 - 6 x + 53 x^{2} )^{2}$
  $1 - 12 x + 142 x^{2} - 636 x^{3} + 2809 x^{4}$
Frobenius angles:  $\pm0.364801829573$, $\pm0.364801829573$
Angle rank:  $1$ (numerical)
Jacobians:  $90$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2304$ $8294400$ $22384947456$ $62271037440000$ $174858360988633344$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $42$ $2950$ $150354$ $7891918$ $418125882$ $22163867350$ $1174711866594$ $62259720942238$ $3299763736469322$ $174887469615379750$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 90 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{53}$.

Endomorphism algebra over $\F_{53}$
The isogeny class factors as 1.53.ag 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-11}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.a_cs$2$(not in LMFDB)
2.53.m_fm$2$(not in LMFDB)
2.53.g_ar$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.a_cs$2$(not in LMFDB)
2.53.m_fm$2$(not in LMFDB)
2.53.g_ar$3$(not in LMFDB)
2.53.a_acs$4$(not in LMFDB)
2.53.ag_ar$6$(not in LMFDB)