# Curves in abelian variety isogeny class 2.53.am_fm, downloaded from the LMFDB on 15 October 2025. y^2=14*x^6+37*x^5+47*x^4+7*x^3+38*x^2+6*x+20 y^2=50*x^6+9*x^5+38*x^4+4*x^3+24*x^2+40*x+39 y^2=30*x^6+23*x^5+40*x^4+45*x^3+40*x^2+23*x+30 y^2=28*x^6+35*x^4+35*x^2+28 y^2=26*x^6+x^5+16*x^4+x^3+16*x^2+x+26 y^2=8*x^6+29*x^4+29*x^2+8 y^2=39*x^6+25*x^5+9*x^4+26*x^3+49*x^2+12*x+9 y^2=39*x^6+16*x^5+48*x^4+43*x^3+32*x^2+13*x+41 y^2=31*x^6+25*x^5+38*x^4+33*x^3+43*x^2+17*x+19 y^2=2*x^6+8*x^5+14*x^4+42*x^3+3*x^2+22*x+22 y^2=50*x^6+30*x^5+49*x^4+x^3+16*x^2+3*x+33 y^2=34*x^6+48*x^5+6*x^3+48*x+34 y^2=24*x^6+32*x^5+13*x^4+44*x^3+29*x^2+41*x+29 y^2=44*x^6+41*x^5+44*x^4+50*x^3+9*x^2+41*x+9 y^2=35*x^6+26*x^5+6*x^4+50*x^3+6*x^2+26*x+35 y^2=18*x^6+x^5+49*x^4+49*x^3+43*x^2+42*x+22 y^2=51*x^6+45*x^5+x^4+32*x^3+6*x^2+27*x+32 y^2=26*x^6+10*x^4+25*x^3+5*x^2+26*x+29 y^2=50*x^6+31*x^5+41*x^4+45*x^3+46*x^2+19*x+52 y^2=47*x^6+52*x^5+52*x^4+17*x^3+13*x^2+43*x+38 y^2=20*x^6+19*x^5+52*x^4+19*x^3+52*x^2+19*x+20 y^2=45*x^6+48*x^4+48*x^2+45 y^2=26*x^6+16*x^5+5*x^4+x^3+18*x^2+42*x+39 y^2=48*x^6+17*x^5+7*x^4+27*x^3+25*x^2+7*x+2 y^2=18*x^6+34*x^5+13*x^4+10*x^3+13*x^2+34*x+18 y^2=34*x^6+20*x^5+34*x^4+37*x^3+34*x^2+20*x+34 y^2=17*x^6+39*x^5+21*x^4+45*x^3+50*x^2+30*x+29 y^2=30*x^6+45*x^5+31*x^4+26*x^3+12*x^2+2*x+33 y^2=43*x^6+51*x^5+38*x^4+x^3+47*x^2+23*x+46 y^2=35*x^6+34*x^5+35*x^4+42*x^3+34*x^2+14*x+14 y^2=4*x^6+37*x^5+x^4+37*x^3+x^2+37*x+4 y^2=10*x^6+30*x^5+52*x^4+20*x^3+52*x^2+30*x+10 y^2=2*x^6+11*x^5+52*x^4+47*x^3+44*x^2+43*x+27 y^2=47*x^6+44*x^5+24*x^4+17*x^3+24*x^2+44*x+47 y^2=40*x^6+20*x^4+20*x^2+40 y^2=27*x^6+32*x^4+32*x^2+27 y^2=27*x^6+19*x^5+3*x^4+40*x^3+18*x^2+48*x+2 y^2=10*x^5+34*x^4+29*x^3+34*x^2+10*x y^2=x^6+3*x^5+28*x^4+41*x^3+10*x^2+45*x+47 y^2=14*x^6+9*x^5+9*x^4+38*x^3+36*x^2+10*x+6 y^2=30*x^6+13*x^5+9*x^4+13*x^3+9*x^2+13*x+30 y^2=23*x^6+9*x^5+3*x^4+35*x^3+45*x^2+11*x+33 y^2=50*x^6+10*x^5+15*x^4+8*x^3+x^2+13*x+22 y^2=28*x^6+27*x^5+23*x^4+51*x^3+8*x^2+21*x+15 y^2=47*x^6+16*x^5+32*x^4+44*x^3+30*x^2+24*x+28 y^2=29*x^6+52*x^5+27*x^4+15*x^3+34*x^2+40*x+37 y^2=31*x^6+35*x^5+3*x^4+3*x^3+52*x^2+23*x+47 y^2=22*x^6+51*x^5+5*x^4+31*x^3+5*x^2+51*x+22 y^2=41*x^6+11*x^5+46*x^4+x^3+46*x^2+11*x+41 y^2=33*x^6+16*x^5+39*x^4+8*x^3+39*x^2+16*x+33 y^2=36*x^6+40*x^4+40*x^2+36 y^2=49*x^6+17*x^5+10*x^4+47*x^3+47*x^2+18*x+25 y^2=21*x^6+10*x^5+33*x^4+29*x^3+48*x^2+47*x+26 y^2=20*x^6+8*x^5+22*x^4+48*x^3+30*x^2+14*x+14 y^2=32*x^6+42*x^5+38*x^4+18*x^3+38*x^2+42*x+32 y^2=30*x^6+49*x^5+6*x^4+6*x^2+49*x+30 y^2=17*x^5+16*x^4+47*x^3+9*x^2+6*x y^2=13*x^6+31*x^5+24*x^4+3*x^3+24*x^2+31*x+13 y^2=48*x^6+33*x^4+33*x^2+48 y^2=32*x^6+20*x^5+11*x^4+35*x^3+47*x^2+48*x+14 y^2=12*x^6+38*x^5+30*x^4+45*x^3+48*x^2+4*x+50 y^2=23*x^6+34*x^5+52*x^4+51*x^3+28*x^2+50*x+35 y^2=8*x^6+23*x^5+11*x^4+52*x^3+11*x^2+23*x+8 y^2=5*x^6+21*x^5+38*x^4+4*x^3+30*x^2+49*x+46 y^2=11*x^6+7*x^5+33*x^4+5*x^3+27*x^2+6*x+38 y^2=13*x^6+47*x^5+33*x^4+47*x^3+33*x^2+47*x+13 y^2=45*x^6+26*x^4+16*x^3+39*x^2+26 y^2=22*x^6+17*x^5+38*x^4+27*x^3+38*x^2+17*x+22 y^2=35*x^6+43*x^5+38*x^4+5*x^3+x^2+40*x+27 y^2=25*x^6+39*x^5+15*x^4+3*x^3+15*x^2+39*x+25 y^2=48*x^6+33*x^5+41*x^4+37*x^3+41*x^2+33*x+48 y^2=44*x^6+2*x^5+16*x^4+16*x^3+9*x^2+35*x+29 y^2=52*x^6+22*x^5+44*x^4+28*x^3+15*x^2+14*x+38 y^2=49*x^6+28*x^4+28*x^2+49 y^2=23*x^6+34*x^5+18*x^4+31*x^3+18*x^2+34*x+23 y^2=14*x^6+37*x^5+31*x^4+24*x^3+31*x^2+37*x+14 y^2=19*x^6+36*x^5+28*x^4+38*x^3+5*x^2+49*x+52 y^2=33*x^6+10*x^4+10*x^2+33 y^2=26*x^6+15*x^4+49*x^3+16*x^2+2 y^2=40*x^6+45*x^5+37*x^4+x^3+37*x^2+45*x+40 y^2=47*x^6+17*x^5+35*x^4+43*x^3+35*x^2+17*x+47 y^2=46*x^6+2*x^5+17*x^4+16*x^3+15*x^2+32*x+29 y^2=2*x^6+40*x^5+18*x^4+37*x^3+30*x^2+11*x+23 y^2=38*x^6+45*x^5+44*x^4+40*x^3+17*x^2+31*x+47 y^2=30*x^6+34*x^5+6*x^4+13*x^3+9*x^2+50*x+35 y^2=31*x^6+45*x^5+49*x^4+10*x^3+49*x^2+45*x+31 y^2=41*x^6+13*x^5+7*x^4+44*x^3+7*x^2+13*x+41 y^2=3*x^6+5*x^5+29*x^4+34*x^3+16*x^2+14*x+5 y^2=24*x^6+26*x^5+4*x^4+35*x^3+4*x^2+26*x+24 y^2=6*x^6+10*x^5+35*x^4+45*x^3+35*x^2+10*x+6