Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 4 x + 67 x^{2} )^{2}$ |
| $1 + 8 x + 150 x^{2} + 536 x^{3} + 4489 x^{4}$ | |
| Frobenius angles: | $\pm0.578570930462$, $\pm0.578570930462$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $123$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5184$ | $21233664$ | $90014400576$ | $405868407422976$ | $1823025112219358784$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $76$ | $4726$ | $299284$ | $20141230$ | $1350263836$ | $90458490022$ | $6060701879140$ | $406067709235294$ | $27206534921234668$ | $1822837800329532886$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 123 curves (of which all are hyperelliptic):
- $y^2=19 x^6+42 x^5+44 x^4+19 x^3+44 x^2+42 x+19$
- $y^2=x^6+x^3+62$
- $y^2=27 x^6+3 x^5+61 x^4+8 x^3+61 x^2+3 x+27$
- $y^2=43 x^6+59 x^5+2 x^4+41 x^3+2 x^2+59 x+43$
- $y^2=27 x^6+36 x^5+63 x^4+13 x^3+63 x^2+36 x+27$
- $y^2=56 x^6+20 x^5+45 x^4+41 x^3+62 x^2+39 x+54$
- $y^2=62 x^6+11 x^5+48 x^4+10 x^3+48 x^2+11 x+62$
- $y^2=38 x^6+35 x^5+2 x^4+3 x^3+2 x^2+35 x+38$
- $y^2=51 x^6+11 x^5+5 x^4+4 x^3+37 x^2+40 x+14$
- $y^2=x^6+49 x^3+64$
- $y^2=57 x^6+4 x^5+58 x^4+48 x^3+46 x^2+57 x+19$
- $y^2=19 x^5+29 x^4+20 x^3+47 x^2+37 x$
- $y^2=56 x^6+4 x^4+4 x^2+56$
- $y^2=46 x^6+57 x^5+49 x^4+63 x^3+45 x^2+16 x+32$
- $y^2=40 x^6+37 x^5+45 x^4+13 x^3+15 x^2+18 x+22$
- $y^2=44 x^6+31 x^5+44 x^4+50 x^3+10 x^2+62 x+5$
- $y^2=62 x^6+53 x^5+18 x^4+15 x^3+18 x^2+53 x+62$
- $y^2=x^6+60 x^3+59$
- $y^2=54 x^6+53 x^5+7 x^4+65 x^3+31 x^2+3 x+39$
- $y^2=30 x^6+57 x^5+20 x^4+53 x^3+55 x^2+8 x+19$
- and 103 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The isogeny class factors as 1.67.e 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$ |
Base change
This is a primitive isogeny class.