Properties

Label 2.13.a_w
Base field $\F_{13}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{13}$
Dimension:  $2$
L-polynomial:  $( 1 - 2 x + 13 x^{2} )( 1 + 2 x + 13 x^{2} )$
  $1 + 22 x^{2} + 169 x^{4}$
Frobenius angles:  $\pm0.410543812489$, $\pm0.589456187511$
Angle rank:  $1$ (numerical)
Jacobians:  $22$
Isomorphism classes:  128

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $192$ $36864$ $4826304$ $807469056$ $137857789632$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $14$ $214$ $2198$ $28270$ $371294$ $4825798$ $62748518$ $815802334$ $10604499374$ $137857087414$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 22 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{13^{2}}$.

Endomorphism algebra over $\F_{13}$
The isogeny class factors as 1.13.ac $\times$ 1.13.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{13}$
The base change of $A$ to $\F_{13^{2}}$ is 1.169.w 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.13.ae_be$2$2.169.bs_bfq
2.13.e_be$2$2.169.bs_bfq
2.13.am_cj$3$(not in LMFDB)
2.13.aj_bo$3$(not in LMFDB)
2.13.ad_q$3$(not in LMFDB)
2.13.a_ax$3$(not in LMFDB)
2.13.a_b$3$(not in LMFDB)
2.13.d_q$3$(not in LMFDB)
2.13.j_bo$3$(not in LMFDB)
2.13.m_cj$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.13.ae_be$2$2.169.bs_bfq
2.13.e_be$2$2.169.bs_bfq
2.13.am_cj$3$(not in LMFDB)
2.13.aj_bo$3$(not in LMFDB)
2.13.ad_q$3$(not in LMFDB)
2.13.a_ax$3$(not in LMFDB)
2.13.a_b$3$(not in LMFDB)
2.13.d_q$3$(not in LMFDB)
2.13.j_bo$3$(not in LMFDB)
2.13.m_cj$3$(not in LMFDB)
2.13.a_aw$4$(not in LMFDB)
2.13.ao_cx$6$(not in LMFDB)
2.13.am_cj$6$(not in LMFDB)
2.13.ak_bz$6$(not in LMFDB)
2.13.aj_bo$6$(not in LMFDB)
2.13.ah_bk$6$(not in LMFDB)
2.13.af_m$6$(not in LMFDB)
2.13.ad_q$6$(not in LMFDB)
2.13.ac_aj$6$(not in LMFDB)
2.13.a_ax$6$(not in LMFDB)
2.13.a_b$6$(not in LMFDB)
2.13.c_aj$6$(not in LMFDB)
2.13.d_q$6$(not in LMFDB)
2.13.f_m$6$(not in LMFDB)
2.13.h_bk$6$(not in LMFDB)
2.13.j_bo$6$(not in LMFDB)
2.13.k_bz$6$(not in LMFDB)
2.13.m_cj$6$(not in LMFDB)
2.13.o_cx$6$(not in LMFDB)
2.13.a_ab$12$(not in LMFDB)
2.13.a_x$12$(not in LMFDB)