Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 2 x + 37 x^{2} )^{2}$ |
| $1 - 4 x + 78 x^{2} - 148 x^{3} + 1369 x^{4}$ | |
| Frobenius angles: | $\pm0.447431543289$, $\pm0.447431543289$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $49$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1296$ | $2073600$ | $2587553424$ | $3504384000000$ | $4806886843504656$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $34$ | $1510$ | $51082$ | $1869838$ | $69319474$ | $2565837430$ | $94933005082$ | $3512477602078$ | $129961694357314$ | $4808584350060550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 49 curves (of which all are hyperelliptic):
- $y^2=x^6+25 x^3+11$
- $y^2=6 x^5+24 x^4+4 x^3+5 x^2+x+26$
- $y^2=25 x^6+31 x^4+31 x^2+25$
- $y^2=9 x^6+20 x^5+32 x^4+10 x^3+32 x^2+20 x+9$
- $y^2=24 x^6+23 x^5+20 x^4+15 x^3+32 x^2+9 x+22$
- $y^2=32 x^6+8 x^5+31 x^4+12 x^3+31 x^2+8 x+32$
- $y^2=5 x^6+10 x^5+10 x^3+10 x+5$
- $y^2=25 x^6+21 x^5+12 x^4+20 x^3+11 x^2+3 x+9$
- $y^2=24 x^6+15 x^5+19 x^4+11 x^3+17 x^2+24 x+18$
- $y^2=19 x^6+14 x^4+5 x^3+10 x^2+29 x+34$
- $y^2=28 x^6+3 x^5+26 x^4+23 x^3+4 x^2+27 x+16$
- $y^2=28 x^6+23 x^5+15 x^4+26 x^3+32 x^2+19 x+25$
- $y^2=26 x^6+20 x^5+9 x^4+14 x^3+21 x^2+2 x+11$
- $y^2=25 x^5+17 x^4+20 x^3+5 x^2+27 x$
- $y^2=17 x^6+13 x^5+9 x^4+20 x^3+9 x^2+13 x+17$
- $y^2=2 x^6+18 x^5+18 x^4+17 x^3+16 x^2+16 x+15$
- $y^2=22 x^6+24 x^5+16 x^4+34 x^3+x^2+29 x+35$
- $y^2=23 x^6+33 x^5+19 x^4+13 x^3+6 x^2+16 x+6$
- $y^2=35 x^6+18 x^4+18 x^2+35$
- $y^2=36 x^6+33 x^5+23 x^4+23 x^3+23 x^2+33 x+36$
- and 29 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$| The isogeny class factors as 1.37.ac 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
Base change
This is a primitive isogeny class.